Math, asked by sakilasharma, 1 month ago


find \: the \: value \: of \\   (x3 -  \frac{1}{ {x}^{3} } )if \frac{x}{2}  =  \frac{1 }{2x} + 1

Answers

Answered by mathdude500
1

\large\underline{\sf{Given- }}

\rm :\longmapsto\:\dfrac{x}{2}  = \dfrac{1}{2x}  + 1

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\: {x}^{3} -  \dfrac{1}{ {x}^{3} }

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:\dfrac{x}{2}  = \dfrac{1}{2x}  + 1

On multiply by 2, we get

\rm :\longmapsto\:x = \dfrac{1}{x}  + 2

can be rewritten as

\rm :\longmapsto\:x  -  \dfrac{1}{x} =  2

Now,

Consider,

\rm :\longmapsto\: {x}^{3} - \dfrac{1}{ {x}^{3} }

\rm \:  =  \:  \:  {\bigg(x - \dfrac{1}{x} \bigg) }^{3} - 3 \times x \times \dfrac{1}{x}\bigg(x - \dfrac{1}{x}  \bigg)

\rm \:  =  \:  \:  {\bigg(x - \dfrac{1}{x} \bigg) }^{3} - 3 \bigg(x - \dfrac{1}{x}  \bigg)

\rm \:  =  \:  \:  {(2)}^{3} - 3 \times 2

\rm \:  =  \:  \: 8 - 6

\rm \:  =  \:  \: 2

Hence,

\boxed{ \bf{ \:  \: \bf :\longmapsto\: {x}^{3} -  \dfrac{1}{ {x}^{3} } = 2 \:  \:  \:  \: }}

Additional Information :-

More Identities to know : -

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions