Math, asked by shiningstar4, 1 year ago


find \: the \: zeroes \: of \: the \: polynomial \: f(x) = abx {}^{2} + (b {}^{2} - ac)x - bc

Answers

Answered by RifaBorbora
1

Answer:

 \alpha  =  \frac{c}{b}  \\  \beta  =  \frac{ - b}{a}

Step-by-step explanation:

ab {x}^{2}  + ( {b}^{2}  - ac)x - bc \\  = ab {x}^{2}  +  {b}^{2} x - acx - bc \\  = bx(ax + b) - c(ax + b) \\  =( bx - c)(ax + b)

Either,

bx - c = 0 \\  =  > bx = c \\  =  > x =  \frac{c}{b}

OR,

ax + b = 0 \\  =  > ax =  - b \\  =  > x =  \frac{ - b}{a}


RifaBorbora: please mark my answer as Brainliest
Answered by Anonymous
2

{\Huge{\mathfrak{\red{Answer:}}}}

\begin{lgathered}x = \frac{ -B \pm \sqrt{ {B}^{2} - 4 AC} }{2 A} \\ \\ \implies \: x = \frac{ - ( {b}^{2} - ac) \pm \sqrt{( {b}^{2} - ac {)}^{2} } - 4(ab) ( - bc) }{2ab} \\ \\ \implies \: x \: = \frac{ - ( {b}^{2} - ac) \pm \sqrt{( {b}^{2} - ac {) }^{2} +4a {b}^{2}c } }{2ab} \\ \\ \implies \: x = \frac{ - ( {b}^{2} - ac) \pm \sqrt{ {b}^{4} - 2a {b}^{2}c + {a}^{2} {c}^{2} + 4a {b}^{2}c } }{2ab} \\ \\ \implies \: x = \frac{ - ( {b}^{2} - ac) \pm \sqrt{( {b}^{2} + ac {)}^{2} } }{2ab} \: \: \: \implies \: x = \frac{ - ( {b}^{2} - ac) \pm( {b}^{2} + ac) }{2ab} \\ \\ \implies \: x = \frac{ - ( {b}^{2} - ac) + ( {b}^{2} + ac) }{2ab} \: \: \: \: or \: \: \: \: x = \frac{ - ( {b}^{2} -ac) - ( {b}^{2} + ac) }{2ab} \\ \\ \implies \: x = \frac{2ac}{2ab} \: \: \: \: \: \: or \: \: \: \: x = \frac{ - 2 {b}^{2} }{2ab} \: \: \: \: \: \implies \: x = \frac{c}{b} \: \: \: \: \: \: or \frac{ - b}{a}\end{lgathered} </p><p>

Similar questions