Math, asked by Anonymous, 1 month ago


 \footnotesize \bold {If  \: \sf y = \dfrac{xcos^{-1}x}{\sqrt{1 - x^2}} - log(\sqrt{1 - x^2}) }  \\ \footnotesize \bold{  then  \: show \:  that} \sf \dfrac{dy}{dx} = \dfrac{cos^{-1}x}{(1-x^2)^{\frac{3}{2}}} \\  \footnotesize  \bold { Continuity \:  a nd \:  Differentiability}

Answers

Answered by mathdude500
61

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y = \dfrac{xcos^{-1}x}{\sqrt{1 - x^2}} - log(\sqrt{1 - x^2})

We know,

\green{ \boxed{ \sf{ \: log( {x}^{y} ) = y \: logx}}}

So, using this we get,

\rm :\longmapsto\:y = \dfrac{xcos^{-1}x}{\sqrt{1 - x^2}} - \dfrac{1}{2}  log(1 - x^2)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{d}{dx}\dfrac{xcos^{-1}x}{\sqrt{1 - x^2}} - \dfrac{1}{2} \dfrac{d}{dx}log(1 - x^2)

We know,

\green{ \boxed{ \sf{ \:\dfrac{d}{dx} \frac{u}{v} =  \frac{v\dfrac{d}{dx}u - u\dfrac{d}{dx}v}{ {v}^{2} }}}} \: and \: \green{ \boxed{ \sf{ \:\dfrac{d}{dx}logx =  \frac{1}{x}}}}

So, using this, we get

\rm=\dfrac{ \sqrt{1 -  {x}^{2}}\dfrac{d}{dx} {xcos}^{ - 1}x - x {cos}^{ - 1} x\dfrac{d}{dx} \sqrt{1 -  {x}^{2} } }{1 -  {x}^{2} } -\dfrac{1}{2(1 -  {x}^{2} )}( - 2x)

We know,

\green{ \boxed{ \sf{ \:\dfrac{d}{dx}uv \:  =  \: u\dfrac{d}{dx}v + v\dfrac{d}{dx}u}}} \:  \: and \:  \: \red{ \boxed{ \sf{ \:\dfrac{d}{dx} \sqrt{x} =  \frac{1}{2 \sqrt{x} }}}}

So, using this, we get

\rm=\dfrac{ \sqrt{1 -  {x}^{2}}\bigg[x\dfrac{d}{dx} {cos}^{ - 1}x + {cos}^{ - 1}x\dfrac{d}{dx}x\bigg] - x {cos}^{ - 1} x\dfrac{1}{2 \sqrt{1 -  {x}^{2} } }( - 2x) }{1 -  {x}^{2} }  + \dfrac{x}{(1 -  {x}^{2} )}

We know,

\green{ \boxed{ \sf{ \:\dfrac{d}{dx}{cos}^{ - 1}x =  -  \frac{1}{ \sqrt{1 -  {x}^{2} } }}}}

So, using this we get,

\rm=\dfrac{ \sqrt{1 -  {x}^{2}}\bigg[ - x\dfrac{1}{ \sqrt{1 -  {x}^{2} } } + {cos}^{ - 1}x\bigg]  + \dfrac{ {x}^{2} {cos}^{ - 1}x}{\sqrt{1 -  {x}^{2} } }}{1 -  {x}^{2} }  + \dfrac{x}{(1 -  {x}^{2} )}

\rm=\dfrac{  - x +  \sqrt{1 -  {x}^{2} }{cos}^{ - 1}x  + \dfrac{ {x}^{2} {cos}^{ - 1}x}{\sqrt{1 -  {x}^{2} } }}{1 -  {x}^{2} }  + \dfrac{x}{(1 -  {x}^{2} )}

\rm=\dfrac{  - x +  \dfrac{(1 -  {x)}^{2}{cos}^{ - 1}x +  {x}^{2} {cos}^{ - 1}x}{ \sqrt{1 -  {x}^{2} } } }{1 -  {x}^{2} }  + \dfrac{x}{(1 -  {x}^{2} )}

\rm=\dfrac{  - x +  \dfrac{(1 -  {x}^{2}+  {x}^{2} ) \: {cos}^{ - 1}x}{ \sqrt{1 -  {x}^{2} } } }{1 -  {x}^{2} }  + \dfrac{x}{(1 -  {x}^{2} )}

\rm=\dfrac{  - x +  \dfrac{\: {cos}^{ - 1}x}{ \sqrt{1 -  {x}^{2} } } }{1 -  {x}^{2} }  + \dfrac{x}{(1 -  {x}^{2} )}

\rm=\dfrac{  - x  }{1 -  {x}^{2} }  + \dfrac{{cos}^{ - 1}x}{(1 -  {x}^{2} ) \sqrt{1 -  {x}^{2} } }  + \dfrac{x}{(1 -  {x}^{2} )}

\rm= \dfrac{{cos}^{ - 1}x}{(1 -  {x}^{2} ) \sqrt{1 -  {x}^{2} } }

\rm= \dfrac{{cos}^{ - 1}x}{ {\bigg(1 -  {x}^{2} \bigg) }^{\dfrac{3}{2} } }

Hence,

\bf\implies \:\red{ \boxed{ \sf{ \:\dfrac{dy}{dx}= \dfrac{{cos}^{ - 1}x}{ {\bigg(1 -  {x}^{2} \bigg) }^{\dfrac{3}{2} } }}}}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by Anonymous
185

Answer:

 \huge \sf{\underbrace{\underline{Answer: -}}}

To find :-

  • Value of the question.

□Explanation :-

  • Refer the attachment for more information.
  • It is better to refer in this i cant do integration so , it is perfectly to refer the given attachment.

♧Conclusion :-

  • I think i did it better for this question.
  • If u got any problem in this answer refer the answer given by @mathsdude.

♧Hope it helps u mate.

♧Thank you .

Attachments:
Similar questions