Math, asked by sajan6491, 2 days ago

  \footnotesize \rm Let \:  f :\R\to\R  \: be  \: a \:  function.  \: We  \: say  \: that  \: f  \: has \\  \footnotesize\rm PROPERTY  \: 1  \: if \:  \lim_{h \to0} \frac{f(h) - f(0)}{ \sqrt{ |h| } }  \: exixts \: and \: is \: finite, and \\  \footnotesize \rm PROPERTY \:  2 \:  if\lim_{h \to0} \frac{f(h) - f(0)}{  {h}^{2}  } \: exists \: and \: if \: finite. \\  \footnotesize \rm Then  \: which  \: of \:  the \:  following  \: options \:  is \:  correct? \\  \footnotesize \rm A.  \: f(x) = x|x| \:  has  \: PROPERTY  \: 2 \\  \footnotesize \rm B.  \: f(x) = sinx \:  has  \: PROPERTY \:  2 \\  \footnotesize \rm C. \:  f(x) = |x|  \: has  \: PROPERTY \:  1 \\  \footnotesize \rm D.  \: f(x) =  {x}^{ \frac{2}{3} }   \: has \:  PROPERTY  \: 1


Answers

Answered by xxblackqueenxx37
52

 \sf \fbox  \red{Question}

 \footnotesize \rm Let \: f :\R\to\R \: be \: a \: function. \: We \: say \: that \: f \: has \\ \footnotesize\rm PROPERTY \: 1 \: if \: \lim_{h \to0} \frac{f(h) - f(0)}{ \sqrt{ |h| } } \: exixts \: and \: is \: finite, and \\ \footnotesize \rm PROPERTY \: 2 \: if\lim_{h \to0} \frac{f(h) - f(0)}{ {h}^{2} } \: exists \: and \: if \: finite. \\ \footnotesize \rm Then \: which \: of \: the \: following \: options \: is \: correct? \\ \footnotesize \rm A. \: f(x) = x|x| \: has \: PROPERTY \: 2 \\ \footnotesize \rm B. \: f(x) = sinx \: has \: PROPERTY \: 2 \\ \footnotesize \rm C. \: f(x) = |x| \: has \: PROPERTY \: 1 \\ \footnotesize \rm D. \: f(x) = {x}^{ \frac{2}{3} } \: has \: PROPERTY \:

 \: \underline{ \rule{190pt}{2pt}}

 \sf  \fbox \red{solution}

 \sf \: correct \: option \:  \\  \\  \sf  (D). \: f(x) = x ^{ \frac{2}{3} } has \: property \: 1 \\  \\ \sf (C).f(x) =  |x|  \: has \: property \: 1

 \: \underline{ \rule{190pt}{2pt}}

 \sf  \fbox \red{explanation }

 \sf \: (A). \: f(x) = x|x| \\  \\  \sf \: = \lim_{h \to0} \frac{h (h) - 0}{ {h}^{2} }  =   \lim_{h \to0} \frac{ |h| }{h}  =    \binom{1 \: if  \: h \to0 ^{ + } }{ - 1 \: if \: h \to0 ^{ - } }  \\  \\  \sf \: so \: \lim_{h \to0} \:  \frac{f(h) - f(0)}{h} dose \: not \: exist

\:

______________________________________

 \sf \: (B).f(x) =  \sin \: x \\  \\  \sf \:  =  \lim_{h \to0} \frac{ \sin(h - 0) }{ {h}^{2} }  = \lim_{h \to0} \frac{1}{h} . \frac{ \sin(h) }{h}  \: dose \: not \: exist

\:

______________________________________

 \sf \: (C).f(x) =  |x|  \\  \\  \sf \: = \lim_{h \to0} \frac{ |h|  - 0}{ \sqrt{ |h| } }  = \lim_{h \to0} \sqrt{ |h| }  = 0

\:

______________________________________

 \sf \:( D).f(x) =  {x}^{ \frac{2}{3} }  \\  \\  \sf \: = \lim_{h \to0} \frac{ h\frac{2}{3} - 0 }{ \sqrt{ |h| } }  =  \lim_{h \to0} |h|^{ \frac{1}{6} }  = 0

 \: \underline{ \rule{190pt}{2pt}}

Similar questions