Math, asked by Anonymous, 1 month ago

 \footnotesize\sf  \: If \: \lim\limits_{x\to a} \dfrac{ \sqrt{a + 2x} -  \sqrt{3x}  }{ \sqrt{3a + x} - 2 \sqrt{x}  }  \:  \: equals \: k, \: then \: k \: is \: equals \: to :-

 \sf \: a.) \dfrac{2}{3 \sqrt{3} }

 \sf \: b.)  \dfrac{2}{3}

 \sf \: c.)   \dfrac{3}{2}

  \sf \: d.)    \sqrt{3}

Need complete solution and explanation, incorrect answer or answer without explanation will be reported immediately.

Answers

Answered by FiercePrince
8

⠀⠀⠀⌬⠀ Question :

 \sf \: If \: \lim\limits_{x\to a} \dfrac{ \sqrt{a + 2x} - \sqrt{3x} }{ \sqrt{3a + x} - 2 \sqrt{x} } \: \: equals \: k, \: then \: k \: is \: equals \: to :-

 \sf \: a.) \dfrac{2}{3 \sqrt{3} }

 \sf \: b.) \dfrac{2}{3}

 \sf \: c.) \dfrac{3}{2}

 \sf \: d.) \sqrt{3}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

\twoheadrightarrow  \sf \:  \: \lim\limits_{x\to a} \dfrac{ \sqrt{a + 2x} - \sqrt{3x} }{ \sqrt{3a + x} - 2 \sqrt{x} } \: \: = \: k \:\\\\

\qquad \bigstar \underline {\pmb{\purple{\sf By \:Using \:the \:Given \: \::\:}}}\\\\

\twoheadrightarrow \sf \:  \: \lim\limits_{x\to a} \dfrac{\sqrt{ a + 2x }  - \sqrt{3x} }{\sqrt{3a + x } - 2\sqrt{x}} \: \times \: \dfrac{ \sqrt{a + 2x} + \sqrt{3x} }{ \sqrt{a + 2x} +  \sqrt{3x} } \: \: = \: k \:\\\\

\twoheadrightarrow \sf \:  \: \lim\limits_{x\to a} \dfrac{\sqrt{ a + 2x }  - \sqrt{3x} }{\sqrt{3a + x } - 2\sqrt{x}} \: \times \: \dfrac{ \sqrt{a + 2x} + \sqrt{3x} }{ \sqrt{a + 2x} +  \sqrt{3x} } \: \: = \: k \:\\\\

\twoheadrightarrow \sf \:  \: \lim\limits_{x\to a} \dfrac{ a + 2x   - 3x }{\big( \sqrt{3a + x } - 2\sqrt{x}\big) \big( \sqrt{a + 2x} +  \sqrt{3x} \big) } \:\: \: = \: k \:\\\\

\twoheadrightarrow \sf \:  \: \lim\limits_{x\to a} \dfrac{ \big( a - x \big) \big[ \sqrt{3a + x } + 2\sqrt{x}  \big]  }{\big( 3a + x  - 4x \big) \big( \sqrt{a + 2x} +  \sqrt{3x} \big) } \:\: \: = \: k \:\\\\

\twoheadrightarrow \sf \:  \: \dfrac{4\sqrt{a}}{3\times 2\sqrt{3a}} \:\: \: = \: k \:\\\\

\twoheadrightarrow \sf \:  \: \dfrac{2\sqrt{a}}{3\times \sqrt{3a}} \:\: \: = \: k \:\\\\

\twoheadrightarrow \sf \:  \: \dfrac{2}{3 \sqrt{3}} \:\: \: = \: k \:\\\\

\twoheadrightarrow \pmb {\underline {\boxed { \purple {\frak{ \:  k\:=\:\: \dfrac{2}{3 \sqrt{3}} \:}}}}}\:\:\bigstar  \:\\\\

\qquad \therefore \:\sf  Hence \:k\:is \:Equals \:to \:\pmb{\sf Option \:A \:)\:\dfrac{2}{3\sqrt{3}}}\:. \:\\

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\footnotesize\sf \: \lim\limits_{x\to a} \dfrac{ \sqrt{a + 2x} - \sqrt{3x} }{ \sqrt{3a + x} - 2 \sqrt{x} }

If we substitute directly x = a, we get

\rm \:  =  \:  \dfrac{ \sqrt{a + 2a} - \sqrt{3a} }{ \sqrt{3a + a} - 2 \sqrt{a} }

\rm \:  =  \:  \dfrac{ \sqrt{3a} - \sqrt{3a} }{ \sqrt{4a} - 2 \sqrt{a} }

\rm \:  =  \:  \dfrac{ 0}{2 \sqrt{a} - 2 \sqrt{a} }

\rm \:  =  \:  \dfrac{ 0}{0 } \: which \: is \: meaningless

So, To evaluate this limit,

\rm :\longmapsto\:\footnotesize\sf \: \lim\limits_{x\to a} \dfrac{ \sqrt{a + 2x} - \sqrt{3x} }{ \sqrt{3a + x} - 2 \sqrt{x} }

On rationalizing the denominator and numerator, we get

\rm \:  =  \: \footnotesize\sf \: \lim\limits_{x\to a} \dfrac{ \sqrt{a + 2x} - \sqrt{3x} }{ \sqrt{3a + x} - 2 \sqrt{x} } \times \dfrac{ \sqrt{3a + x}  + 2 \sqrt{x} }{ \sqrt{3a + x}  + 2 \sqrt{x} }  \times \dfrac{ \sqrt{a + 2x}  +  \sqrt{3x} }{ \sqrt{a + 2x} +  \sqrt{3x}  }

We know,

\red{ \boxed{ \sf{ \:(x + y)(x - y) =  {x}^{2} -  {y}^{2}}}}

So, using this we get

\rm \:  =  \: \displaystyle\lim_{x \to a}\sf  \frac{[ \: (a + 2x) - 3x \: ] \: [  \: \sqrt{3a + x} + 2 \sqrt{x} \: ]}{[ \: 3a + x - 4x \: ] \: [ \:  \sqrt{a + 2x} +  \sqrt{3x} \: ] }

\rm \:  =  \: \displaystyle\lim_{x \to a}\sf  \frac{[ \: a + 2x - 3x \: ] \: [  \: \sqrt{3a + x} + 2 \sqrt{x} \: ]}{[ \: 3a  - 3x \: ] \: [ \:  \sqrt{a + 2x} +  \sqrt{3x} \: ] }

\rm \:  =  \: \displaystyle\lim_{x \to a}\sf  \frac{[ \: a - x \: ] \: [  \: \sqrt{3a + x} + 2 \sqrt{x} \: ]}{[ \: 3a  - 3x \: ] \: [ \:  \sqrt{a + 2x} +  \sqrt{3x} \: ] }

\rm \:  =  \: \displaystyle\lim_{x \to a}\sf  \frac{[ \: a - x \: ] \: [  \: \sqrt{3a + x} + 2 \sqrt{x} \: ]}{[ \: 3(a  - x) \: ] \: [ \:  \sqrt{a + 2x} +  \sqrt{3x} \: ] }

\rm \:  =  \: \displaystyle\lim_{x \to a}\sf  \frac{ \: [  \: \sqrt{3a + x} + 2 \sqrt{x} \: ]}{3\: [ \:  \sqrt{a + 2x} +  \sqrt{3x} \: ] }

\rm \:  =  \: \sf  \dfrac{ \: [  \: \sqrt{3a + a} + 2 \sqrt{a} \: ]}{3\: [ \:  \sqrt{a + 2a} +  \sqrt{3a} \: ] }

\rm \:  =  \: \sf  \dfrac{ \: [  \: \sqrt{4a} + 2 \sqrt{a} \: ]}{3\: [ \:  \sqrt{3a} +  \sqrt{3a} \: ] }

\rm \:  =  \: \sf  \dfrac{ \: [  \: 2\sqrt{a} + 2 \sqrt{a} \: ]}{3\: [ \: 2 \sqrt{3a} \: ] }

\rm \:  =  \: \sf  \dfrac{ \: [  \: 4\sqrt{a}  \: ]}{3\: [ \: 2 \sqrt{3a} \: ] }

\rm \:  =  \: \dfrac{2}{3 \sqrt{3} }

So,

\rm :\longmapsto\:\red{ \boxed{ \sf{ \:\footnotesize\sf \: \lim\limits_{x\to a} \dfrac{ \sqrt{a + 2x} - \sqrt{3x} }{ \sqrt{3a + x} - 2 \sqrt{x} } =  \frac{2}{3 \sqrt{3} } }}}

But it is given that,

\rm :\longmapsto\:\green{ \boxed{ \sf{ \:\footnotesize\sf \: \lim\limits_{x\to a} \dfrac{ \sqrt{a + 2x} - \sqrt{3x} }{ \sqrt{3a + x} - 2 \sqrt{x} } =  k }}}

So, hence, we concluded that

\red{ \boxed{ \sf{  \:  \:  \: \:k \:  =  \:  \frac{2}{ \:  \: 3 \sqrt{3}  \:  \:  \: }}}}

  • Hence, Option (a) is correct.

\red{ \boxed{ \sf{ \:\displaystyle\lim_{x \to 0}\sf  \frac{sinx}{x} = 1}}}

\red{ \boxed{ \sf{ \:\displaystyle\lim_{x \to 0}\sf  \frac{tanx}{x} = 1}}}

\red{ \boxed{ \sf{ \:\displaystyle\lim_{x \to 0}\sf  \frac{log(1 + x)}{x} = 1}}}

\red{ \boxed{ \sf{ \:\displaystyle\lim_{x \to 0}\sf  \frac{ {e}^{x} - 1 }{x} = 1}}}

\red{ \boxed{ \sf{ \:\displaystyle\lim_{x \to 0}\sf  \frac{ {a}^{x} - 1 }{x} = loga}}}

Similar questions