Math, asked by Anonymous, 4 days ago

 \footnotesize\textrm{Show that if a is a constant, then u(x,t)=sin(at)cos(x) is a solution to$\dfrac{\partial^2 u}{\partial t^2}=a^2 \dfrac{\partial^2 u}{\partial x^2}$}

Answers

Answered by Anonymous
50

Refer to the above both attachments :D

Used Concepts :-

  • {\bf \dfrac{d}{dx} \{C \cdot f ( x )\} = C \cdot \dfrac{d}{dx} \{f(x)\}}

  • {\bf \dfrac{d}{dx} \{\sin ( x)\}= \cos ( x)}

  • {\bf \dfrac{d}{dx} \{\cos ( x)\}= - \sin ( x)}
Attachments:
Answered by mathdude500
34

\large\underline{\sf{Solution-}}

Given that,

\rm \: u(x,t)=sin(at) \: cos(x) \\

that can be further rewritten as

\rm \: u=sin(at) \: cos(x)  -  -  - (1)\\

Differentiate partially w. r. t. x, we get

\rm \: \dfrac{\partial }{\partial x}u=\dfrac{\partial }{\partial x} \: sin(at) \: cos(x) \\

\rm \: \dfrac{\partial u}{\partial x}=sin(at) \: \dfrac{\partial }{\partial x}  \: cos(x) \\

\rm \: \dfrac{\partial u}{\partial x}=sin(at) \: ( - sinx) \\

\rm \: \dfrac{\partial u}{\partial x} \: = -  \: sin(at) \:sinx \\

On differentiating partially w. r. t. x, we get

\rm \:\dfrac{\partial }{\partial x} \dfrac{\partial u}{\partial x} \: = -\dfrac{\partial }{\partial x}  \: sin(at) \:sinx \\

\rm \:\dfrac{\partial^2 u}{\partial x^2} \: = - \: sin(at)\dfrac{\partial }{\partial x}   \:sinx \\

\rm\implies \:\rm \:\dfrac{\partial^2 u}{\partial x^2} \: = - \: sin(at) \: cosx  -  -  -  - (2)\\

Now, Consider

\rm \: u=sin(at) \: cos(x)\\

On differentiating partially w. r. t. t, we get

\rm \:\dfrac{\partial }{\partial t} u=\dfrac{\partial }{\partial t}sin(at) \: cos(x)\\

\rm \:\dfrac{\partial u}{\partial t} =cosx \: \dfrac{\partial }{\partial t}sin(at) \: \\

\rm \:\dfrac{\partial u}{\partial t} =cosx \: cos(at)  \: a\: \\

\rm \:\dfrac{\partial u}{\partial t} =a \: cosx \: cos(at)  \: \\

On differentiating both sides w. r. t. t, we get

\rm \:\dfrac{\partial }{\partial t}\dfrac{\partial u}{\partial t} =\dfrac{\partial }{\partial t}a \: cosx \: cos(at)  \: \\

\rm \:\dfrac{\partial^2 u}{\partial t^2} = \: a \: cosx \: \dfrac{\partial }{\partial t} \: cos(at)  \: \\

\rm \:\dfrac{\partial^2 u}{\partial t^2} = \: a \: cosx \:( - \: sin \: at) \:  a \: \\

\rm \:\dfrac{\partial^2 u}{\partial t^2} = \:   -  \: {a}^{2}  \: cosx \:\: sin(at) \: \\

can be further rewritten as

\rm \:\dfrac{\partial^2 u}{\partial t^2} =  \: {a}^{2}  \: [ -  \: cosx \:\: sin(at)] \: \\

So, using equation (1), can be further rewritten as

\rm \:\dfrac{\partial^2 u}{\partial t^2} =  \: {a}^{2}  \: \dfrac{\partial^2 u}{\partial x^2} \: \\

Hence,

\footnotesize\textrm{If a is a constant, then u(x,t)=sin(at)cos(x) is a solution to $\dfrac{\partial^2 u}{\partial t^2}=a^2 \dfrac{\partial^2 u}{\partial x^2}$}

\rule{190pt}{2pt}

Formulae used :-

\boxed{\rm{  \:\dfrac{d}{dx}  \: sinx \:  =  \: cosx \: }} \\

\boxed{\rm{  \:\dfrac{d}{dx}  \: cosx \:  =  \:  -  \: sinx \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cox & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions