Math, asked by Itzheartcracer, 1 month ago

\footnotesize{\underline{\textsf{\textbf{\red{Q\;U\;E\;S\;T\;I\;O\;N\;\;\;:-}}}}}
Prove the following
i) \sf 2sin^2\dfrac{\pi}{6}+cosec^2\dfrac{7\pi}{6}cos^2\dfrac{\pi}{3}=\dfrac{3}{2}
ii) \sf cos^22x-cos^26x=sin4x\;sin8x

Answers

Answered by senboni123456
9

Step-by-step explanation:

\rm\:\bold{i.}

We have,

  \rm 2sin^2\dfrac{\pi}{6}+cosec^2\dfrac{7\pi}{6}cos^2\dfrac{\pi}{3}

  \rm  = 2 \bigg(\frac{1}{2} \bigg)^{2} +cosec^2 \bigg(\pi  + \frac{\pi}{6} \bigg). \bigg(\frac{1}{2} \bigg)^{2}  \\

  \rm  = 2  \times \frac{1}{4} + \frac{1}{4} \times  cosec^2 \bigg( \frac{\pi}{6} \bigg)  \\

  \rm  = \frac{1}{2} + \frac{1}{4} \times  (2)^2   \\

  \rm  = \frac{1}{2} + 1  \\

  \rm  = \frac{3}{2}   \\

\rm\:\bold{ii.}

We have,

\rm cos^2(2x)-cos^2(6x)

\rm  =  \{cos(2x)-cos(6x) \} \{  cos(2x) + cos(6x) \}

\rm  =   \bigg\{ - 2 \sin \bigg( \frac{2x + 6x}{2} \bigg)  \sin \bigg( \frac{2x -  6x}{2} \bigg) \bigg\}  \bigg\{  2cos \bigg( \frac{2x + 6x}{2} \bigg) cos \bigg( \frac{2x  -  6x}{2} \bigg)\bigg \} \\

\rm  =   \bigg\{ - 2 \sin \bigg( \frac{ 8x}{2} \bigg)  \sin \bigg( \frac{ -  4x}{2} \bigg) \bigg\}  \bigg\{  2cos \bigg( \frac{ 8x}{2} \bigg) cos \bigg( \frac{  -  4x}{2} \bigg)\bigg \} \\

\rm  =   \bigg\{  2 \sin \bigg( \frac{ 8x}{2} \bigg)  \sin \bigg( \frac{ 4x}{2} \bigg) \bigg\}  \bigg\{  2cos \bigg( \frac{ 8x}{2} \bigg) cos \bigg( \frac{ 4x}{2} \bigg)\bigg \} \\

\rm  =    2 \sin ( 4x)  \sin ( 2x ) .   2cos( 4x) cos ( 2x )\\

\rm  =    2 \sin ( 4x)  cos( 4x).2 \sin ( 2x ) cos ( 2x )\\

\rm  =     \sin ( 8x)  \sin ( 4x ) \\

Answered by progressivestudy
1

Answer:

Hey

Step-by-step explanation:

you are a good and quality answer person..u are intelligent

please see my first 4 mathematics Question

you will soon become a moderator

Similar questions