Math, asked by weiwei27121992, 19 days ago

 \frac{1}{1 - \sqrt{2 + \sqrt{3} } }
Rationalise the denominator

Answers

Answered by vikkiain
1

\frac{  1  - \sqrt{3}   +   \sqrt{2 +  \sqrt{3} }  -   \sqrt{2 \sqrt{3}  + 3} }{2}

Step-by-step explanation:

 \frac{1}{1 -  \sqrt{2 +  \sqrt{3} } } \\  =   \frac{1}{1 -  \sqrt{2 +  \sqrt{3} } } \times  \frac{1 +  \sqrt{2 +  \sqrt{3} } }{1  +   \sqrt{2 +  \sqrt{3} } } \\  =  \frac{1 +  \sqrt{2 +  \sqrt{3} } }{ {1}^{2} - ( \sqrt{2 +  \sqrt{3} } )^{2}  }  \\  =  \frac{1 +  \sqrt{2 +  \sqrt{3} } }{1 - 2 -  \sqrt{3} }  \\  =  \frac{1 +  \sqrt{2 +  \sqrt{3} } }{ - 1-  \sqrt{3} }  \\  =  \frac{1 +  \sqrt{2 +  \sqrt{3} } }{ - 1-  \sqrt{3} }  \times \frac{ - 1 +  \sqrt{3}  }{ - 1 +   \sqrt{3} }  \\  =  \frac{ - 1 +  \sqrt{3} -  \sqrt{2 +  \sqrt{3} } +  \sqrt{3}. \sqrt{2 +  \sqrt{3} }    }{( - 1)^{2} - ( \sqrt{3} )^{2}  }  \\  =  \frac{ - 1 +  \sqrt{3}  -  \sqrt{2 +  \sqrt{3} } +  \sqrt{2 \sqrt{3}  + 3} }{1 - 3}  \\  = \frac{ - 1 +  \sqrt{3}    -  \sqrt{2 +  \sqrt{3} } +  \sqrt{2 \sqrt{3}  + 3} }{ - 2}  \\  = \frac{  1  - \sqrt{3}   +   \sqrt{2 +  \sqrt{3} }  -   \sqrt{2 \sqrt{3}  + 3} }{2}

Similar questions