Math, asked by anushikachabbra, 1 year ago


  \frac{1}{1 + x {}^{a - b} }  +  \frac{1}{1 + x {}^{b - a} }  = 1
prove this...
plzz help with proper explanation

Answers

Answered by ShuchiRecites
0
Hello Mate

 \frac{1}{1 + {x}^{a - b} } + \frac{1}{1 + {x}^{b - a} } = 1 \\ \frac{1}{1 + \frac{ {x}^{a} }{ {x}^{b} } } + \frac{1}{1 + \frac{ {x}^{b} }{ {x}^{a} } } = 1 \\ Take LCM of dinominators  \\ \frac{ {x}^{b} }{ {x}^{b} + {x}^{a} } + \frac{ {x}^{a} }{ {x}^{a} + {x}^{b} } = 1 \\ \frac{ {x}^{a} + {x}^{b} }{ {x}^{a} + {x}^{b} } = 1 \\ 1 = 1

Hope it helps!

anushikachabbra: thankuu mate☺☺
ShuchiRecites: ur wlcm
ShuchiRecites: thanks for brainliest dear
Similar questions