Math, asked by SubhajoyMukherjee1, 1 year ago


 \frac{1}{1 +  {x}^{a - b} }  +  \frac{1}{1 +  {x}^{b - a} }
is equal to ?

Answers

Answered by abhi178
3

\frac{1}{1+x^{a-b}}+\frac{1}{1 + x^{b-a}} \\  \\  =  \frac{1}{1 +  {x}^{a - b} }  +  \frac{1}{1 +  {x}^{ - (a - b)} }  \\  \\  =  \frac{1}{1 +  {x}^{a - b} }  +  \frac{1}{1 +  \frac{1}{ {x}^{a - b} } }  \\  \\  =  \frac{1}{1 +  {x}^{a - b} }  +  \frac{ {x}^{a - b} }{ {x}^{a - b} + 1 }  \\  \\  =  \frac{(1 +  {x}^{a - b}) }{1 +  {x}^{a - b} }  \\  \\  = 1
Answered by snehitha2
2
 = \frac{1}{1 +  {x}^{a - b} }  +  \frac{1}{1 +  {x}^{b - a} }

 = \frac{1}{1 +  {x}^{- (b - a) } } + \frac{1}{1 + {x}^{b - a} }

= \frac{1}{1 +  \frac{1} {x^{b - a} } } + \frac{1}{1 + {x}^{b - a}}

= \frac{1}{\frac{ x^{b-a} + 1} {x^{b -a} } } + \frac{1}{1 + {x}^{b - a}}

= \frac{x^{b-a}}{ x^{b-a} + 1} } + \frac{1}{1 + {x}^{b - a}}

=  \frac{1 + {x}^{b - a}}{1 + {x}^{b - a}}

= 1

Similar questions