Math, asked by anushikachabbra, 1 year ago


 \frac{ 1}{1 + x {}^{b - a} + x {}^{c - a}  } +   \frac{1}{1 + x {}^{a -b }  + x {}^{c - b} }  +  \frac{1}{1 + x {}^{b - c} + x {}^{a - c}  }  = 1
prove the statement with proper explanation plzzzz.....

Answers

Answered by ShuchiRecites
1
Hello Mate!

 \frac{1}{1 +  {x}^{b - a}  +  {x}^{c - a} }  +   \frac{1}{1 +  {x}^{a - b}  +  {x}^{c - b} }  +  \frac{1}{1 +  {x}^{b - c}  +  {x}^{a - c} }  = 1 \\  \frac{1}{1 +  \frac{ {x}^{b} }{ {x}^{a}  }  +  \frac{ {x}^{c} }{ {x}^{a} } }  +  \frac{1}{1 +  \frac{ {x}^{a } }{ {x}^{b} }  +  \frac{ {x}^{c} }{ {x}^{b} } }   +   \frac{1}{1 +  \frac{ {x}^{b} }{ {x}^{c} } +  \frac{ {x}^{a} }{ {x}^{c} }  }  = 1 \\  \frac{ {x}^{a} }{ {x}^{a} +  {x}^{b}   +  {x}^{c} } + \frac{ {x}^{b} }{ {x}^{b} +  {x}^{a}  +  {x}^{c}  }  +  \frac{ {x}^{c} }{ {x}^{c}  +  {x}^{b}  +  {x}^{a} }  = 1 \\  \frac{ {x}^{a}  +   {x}^{b}  +  {x}^{c}  }{ {x}^{a} +  {x}^{b}   +  {x}^{c} }  = 1 \\ 1 = 1

Hope it helps☺!

anushikachabbra: thanksss a lot dear....☺☺
ShuchiRecites: ur most wlcm
ShuchiRecites: thanks for marking brainliest frnd
anushikachabbra: ur mst wlcm
Answered by Salmonpanna2022
2

Step-by-step explanation:

Prove that:

 \frac{1}{1 +  {x}^{b - a}  +  {x}^{c - a} }  +  \frac{1}{1 +  {x}^{a - b} +  {x}^{c - b}  }  +  \frac{1}{1 +  {x}^{a - c}  +  {x}^{b - c} }  = 1

We have,

 \frac{1}{1 +  {x}^{b - a}  +  {x}^{c - a} }  +  \frac{1}{1 +  {x}^{a - b} +  {x}^{c - b}  }  +  \frac{1}{1 +  {x}^{a - c}  +  {x}^{b - c} }  = 1

⟹ \frac{1}{1 +  \frac{ {x}^{b} }{ {x}^{a} } +  \frac{ {x}^{c} }{ {x}^{a} }  }  +  \frac{1}{1 +  \frac{ {x}^{a} }{ {x}^{b} } +  \frac{ {x}^{c} }{ {x}^{b} }  }  +  \frac{1}{1 +  \frac{ {x}^{a} }{ {x}^{c} } +  \frac{ {x}^{b} }{ {x}^{c} }  }  = 1

⟹ \frac{ {x}^{a} }{ {x}^{a} +  {x}^{b}   +  {x}^{c} }  +  \frac{ {x}^{b} }{ {x}^{b} +  {x}^{a} +   {x}^{c}  }  +  \frac{ {x}^{c} }{ {x}^{c}  +  {x}^{a}  +  {x}^{b} }  = 1

⟹ \frac{ {x}^{a}  +  {x}^{b} +  {x}^{c}  }{ {x}^{a}  +  {x}^{b}  +  {x}^{c} }  = 1  \\  \\

⟹ 1 = 1

LHS = RHS

Hence, proved:

Similar questions