Math, asked by Sudipta34, 11 months ago


  \frac{1}{2}  log_{ \sqrt{3} }( \frac{x + 1}{x + 5} )  +   log_{9}( {x + 5)}^{2}  = 1
Solve it .

Don't spam !!​

Answers

Answered by Anonymous
4

Question :

\sf\frac{1}{2} log_{ \sqrt{3} }( \frac{x + 1}{x + 5} ) + log_{9}( {x + 5)}^{2} = 1

Solve it .

Solution :

\sf\frac{1}{2} log_{ \sqrt{3} }( \frac{x + 1}{x + 5} ) + log_{9}( {x + 5)}^{2} = 1

 \implies \sf \:  \frac{1}{2} . \frac{ log( \frac{x + 1}{x + 5} ) }{ log( \sqrt{3}) }  +  \frac{ log( {x + 5)}^{2} }{ log(9) }  = 1 \:  \: [identity : \:  log_{a}(b)   =  \frac{ log(b) }{ log(a) } ]

 \implies \sf \:  \frac{1}{2} . \frac{ log( \frac{x + 1}{x + 5} ) }{ \frac{1}{2}  log(3) }  +  \frac{2 log(x + 5) }{2 log(3) }  = 1

 \implies \sf \:  \frac{ log( \frac{x + 1}{x + 5} ) }{ log(3) }  +  \frac{ log(x + 5) }{ log(3) }  = 1

 \implies \sf \:  log_{3}( \frac{x + 1}{x + 5} )  +  log_{3}(x + 5)  = 1 \:  \: [identity : \frac{ log(b) }{ log(a) }  =  log_{a}(b)  ]

 \implies \sf \:  log_{3}( \frac{x + 1}{x + 5} .( x + 5)) = 1 \:  \:  [identity :  log_{a}(m)  +  log_{a}(n) =  log_{a}(mn)  ]

 \implies \sf \:  log_{3}(x + 1)  = 1

 \implies \sf \: x + 1 = 3 \: \:[identity :  log_{a}(b)  = x \implies {a}^{x}  = b]

 \implies \sf \: x  = 3 - 1

\implies\sf{x=2}

Therefore, the value of x is 2.

______________________

General laws of Logarithm :-

\sf{log_a(mn)=log_aM+log_aN}

\sf{log_a(\frac{M}{N})=log_aM-logaN}

\sf{log_aM^n=n\:log_aM}

\sf{log_aM=log_bM\times\:log_ab}

________________________

Answered by silentlover45
1

  \huge \mathfrak{Answer:-}

\implies x = 2

  \huge \mathfrak{Solutions:-}

\implies 1/2 log√3(x + 1 / x + 5) + log9(x + 5)² = 1

\implies 1/2 log(x + 1 / x + 5)/log√3 + log(x + 5)²/log(9) = 1

\implies log(x + 1 / x + 5)/log3 + log(x + 5)²/log(3) = 1

\implies log3(x + 1 / x + 5) + log3(x + 5) = 1

\implies log3(x + 1 / x + 5 × (x + 5))= 1

\implies log 3 × (x + 1) = 1

\implies x + 1 = 3

\implies x = 3 - 1

\implies x = 2

\large\underline\mathrm{hence,}

\large\underline\mathrm{the \: value \: of \: x \: is \: 2.}

\large\underline\mathrm{Hope \: it \: helps \: you \: plz \: mark \: me \: brainlist}

Similar questions