Math, asked by wa02, 1 month ago

\frac{1}{3\sqrt{5}+2\sqrt{2} =? }

\frac{12}{4\sqrt{3}-\sqrt{2} }

Answers

Answered by XxDashingGirlxX
6

#1

\begin{gathered}\\ \sf\longmapsto \frac{1}{3 \sqrt{5}  + 2 \sqrt{2} }\end{gathered}

\begin{gathered}\\ \sf\longmapsto \frac{1}{3 \sqrt{5}  + 2 \sqrt{2} }  \times  \frac{3 \sqrt{5} - 2 \sqrt{2}  }{3 \sqrt{5} - 2 \sqrt{2}  }\end{gathered}

\begin{gathered}\\ \sf\longmapsto \frac{1(3 \sqrt{5} - 2 \sqrt{2})  }{(3 \sqrt{5} + 2 \sqrt{2}) \times (3 \sqrt{5} - 2 \sqrt{2} )   }\end{gathered}

\begin{gathered}\\ \sf\longmapsto \frac{(3 \sqrt{5} - 2 \sqrt{2})  }{(3 \sqrt{5} + 2 \sqrt{2}) \times (3 \sqrt{5} - 2 \sqrt{2} )   }\end{gathered}

\begin{gathered}\\ \sf\longmapsto \frac{3 \sqrt{5} - 2 \sqrt{2}  }{9 \times 5 - 4 \times 2}\end{gathered}

\begin{gathered}\\ \sf\longmapsto \frac{3 \sqrt{5}  - 2 \sqrt{2} }{45 - 8} \end{gathered}

\begin{gathered}\\ \sf\longmapsto \frac{3 \sqrt{5}  - 2 \sqrt{2} }{37} \end{gathered}

______________________________

#2

\begin{gathered}\\ \sf\longmapsto \frac{12}{4\sqrt{3}-\sqrt{2} }\end{gathered}

\begin{gathered}\\ \sf\longmapsto  \frac{12}{4 \sqrt{3}  -  \sqrt{2} }  \times  \frac{4 \sqrt{3} +  \sqrt{2}  }{4 \sqrt{3} +  \sqrt{2}  } \end{gathered}

\begin{gathered}\\ \sf\longmapsto \frac{12(4 \sqrt{3}  +  \sqrt{2}) }{(4 \sqrt{3} -  \sqrt{2}) \times (4 \sqrt{3}  +  \sqrt{2}   )}\end{gathered}

\begin{gathered}\\ \sf\longmapsto \frac{12(4 \sqrt{3} +  \sqrt{2}  )}{16 \times 3 - 2}\end{gathered}

\begin{gathered}\\ \sf\longmapsto \frac{12(4 \sqrt{3} +  \sqrt{2}  )}{46}\end{gathered}

⚜️Reduce the fraction with 2

\begin{gathered}\\ \sf\longmapsto \frac{6(4 \sqrt{3} +  \sqrt{2})  }{23}\end{gathered}

  • Multiply 6 with 4 and 1
  • It is known as distributing it through parentheses
  • We will multiply it with 1 because there is no number with \sqrt{2}

\begin{gathered}\\ \sf\longmapsto \frac{24 \sqrt{3}  + 6 \sqrt{2} }{23}\end{gathered}

Both solved✓

Similar questions