Math, asked by vanshchauhansuperman, 4 months ago


 \frac{1}{3x + y} + \frac{1}{3x - y } =  \frac{3}{4}  \\ \\ \frac{1}{2(3x + y)} - \frac{1}{2(3x - y)} = - \frac{1}{8}\  \textless \ br /\  \textgreater \ ​

Answers

Answered by zeesoftzs
1

Step-by-step explanation:

   \frac{1}{3x + y}  +  \frac{1}{3x - y}  =  \frac{3}{4}  \\    \frac{3x - y + 3x + y}{(3x + y)(3x - y)}  =  \frac{3}{4}  \\  \frac{6x}{( {3x)}^{2} -  {y}^{2}  }  =  \frac{3}{4}  \\ 12x = 3(9 {x}^{2}  -  {y}^{2} ) \\ 27 {x}^{2}  - 3 {y}^{2}  - 12x = 0 \\ 9 {x }^{2}  -  {y}^{2}  - 4x = 0

2.

 \frac{1}{2(3x + y)}  -  \frac{1}{2(3x - y)}  =  -  \frac{1}{8}  \\  \frac{1}{2} ( \frac{3x - y - 3x - y}{(3x + y)(3x - y)}  =  -  \frac{1}{8}  \\   \frac{2y}{9 {x}^{2} -  {y}^{2}  }  =  -  \frac{1}{4}  \\  - 8y = 9 {x}^{2}  -  {y}^{2}  \\ 9 {x}^{2}  -  {y}^{2}  + 8y = 0

Similar questions