Math, asked by aryangupta24082006, 2 months ago

\frac{1}{3x+y} + \frac{1}{3x-y} = \frac{3}{4}
\frac{1}{2(3x+y)} - \frac{1}{2(3x-y)} = \frac{-1}{8}
Find the values of X and Y with full solution.

Answers

Answered by ajjuskf
0

(1)

2x

1

+

3y

1

=2

3x

1

+

2y

1

=

6

13

3x

1

+

2y

1

=

6

13

x

3

−4y=23

x+y

8x+7y

=15

x+y

15

x−y

5

=−2

(ii)

x

2

+

y

3

=2

(iv)

x−1

5

+

y

1

=−1

(iv) 6x+3y=6xy

(vii)

3x+y

1

+

3x−y

1

=

4

3

2(3x+y)

1

2(3x−y)

1

=

8

−1

Attachments:
Answered by ItzMeMukku
17

\color{orchid}\frac{1}{3x + y} + \frac{1}{3x - y} = \frac{3}{4}

Let \underline{\boxed{\sf\purple{1/3x + y = a ,}}} and \underline{\boxed{\sf\purple{1/3x - y = b ,}}}

\sf\color{darkgreen}{a + b = 3/4} (1)

\sf\color{darkgreen}{4a + 4b = 3} (1)

\bold\color{red}{Also ,}

\color{purple}\frac{1}{2 ( 3x + y)} - \frac{1}{2(3x - y)} = -1/8

 \frac{a}{2} -  \frac{b}{2}=  \frac{-1}{8}

 \frac{(a - b)}{2}  \frac{-1}{8}

\sf\color{blue}{a - b} = \frac{-1}{4}

\underline{\boxed{\sf\purple{4a - 4b = -1 }}}\sf\color{red}{(2)}

\small\textbf\color{green}{Adding equations (1) and (2) :-}

\sf\color{orange}{4a + 4b = 3}

\sf\color{orange}{4a - 4b = -1}

\bold{8a = 2}

\sf \: a =\cancel\dfrac { 2 } { 8 }

\underline{\boxed{\sf\purple{a = 1/4}}}

\sf\color{orange}{4a - 4b = -1}

\color{orange} 4\times 1/4\sf\color{orange}{- 4b = -1}

\sf\color{orange}{1 - 4b = -1}

\sf\color{orange}{4b = 1 + 1}

\sf\color{orange}{4b = 2}

\sf \: b =\cancel\dfrac { 2 } { 4 }

\bold{b\: =\: 1/2}

 \frac{1}{3x} + y = a

 \frac{1}{3x}1/3x + y =  \frac{1}{4}

\sf\color{orange}{3x + y = 4}\sf\color{red}{(3)}

 \frac{1}{3x} - y = b

 \frac{1}{3x} - y = 1/2

\underline{\boxed{\sf\purple{3x - y = 2}}}\sf\color{red}{(2)}

\small\textbf\color{orchid}{Adding equations (3) and (4) :-}

\sf\color{orange}{3x + y = 4}

\sf\color{orange}{3x - y = 2}

\sf\color{orange}{6x = 6}

\underline{\boxed{\sf\purple{x = 1}}}

\sf\color{orange}{3x + y = 4}

 \color{orange}3 \times 1 \sf\color{orange}{+ y = 4}

\sf\color{orange}{y = 4 - 3 = 1}

\bold{Hence,}

\color{purple}\underline{\underline{ \tt{{ \boxed {x = 1 , y = 1} }}}}

Thankyou :)

Similar questions