Math, asked by andydamage, 11 months ago


 { (\frac{1}{4} )}^{ - 2}  - 3 {(8)}^{ \frac{2}{3} }  \times  {4}^{0}  +  { \frac{9}{16} }^{  - \frac{1}{2} }

Answers

Answered by VishnuPriya2801
5

Answer:

4.33

Step-by-step explanation:

 \frac{ 1}{4}   {}^{ - 2}  - 3( {8}^{ \frac{2}{3} } ) \times  {4}^{0}  +  \frac{9}{16}  {}^{ -  \frac{1}{2} }  \\  =  {4}^{2} - 3( {2}^{3}  )  {}^{ \frac{2}{3} }  \times 1 + ( \frac{ {3}^{2} }{ {4}^{2} } ) {}^{ \frac{ - 1}{2} }  \\  = 16 - 3(4) +  \frac{3 {}^{ - 1} }{4 {}^{ - 1} }  \\  = 16 - 12 + 0.33 \\  = 4 + 0.33 \\  = 4.33

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Solution-} \\

\textsf{Given that,}

 \sf{  \bigg(\frac { 1} { 4 } \bigg ) ^ {  - 2 } - 3 (  8  ) ^ \frac { 2 }{3}  \times (  {4})^{0}   +  \bigg( \frac {9} { 16 } \bigg ) ^{ -   \frac{1}{2} } } \\

 \sf{  = \bigg(\frac { 4 } { 1 } \bigg ) ^ { 2 } - 3 (  {2}^{3}  ) ^ \frac { 2 }{3}  \times ( 1 ) +  \bigg( \frac { 16} { 9 } \bigg ) ^{  \frac{1}{2} } } \\

 \sf{  =  16 - 3  \times   {2}^{ \cancel3 \times  \frac { 2 }{ \cancel3}} +   \left \{\bigg( \frac { 4} {3} \bigg ) ^{ 2}  \right \} ^{ \frac{1}{2} } } \\

 \sf{  =  16 - 3  \times    {2}^{2}  +  \bigg( \frac { 4} {3} \bigg ) ^{  \cancel2 \times  \frac{1}{ \cancel2} }     } \\

 \sf{  =  16 - 3  \times   4 +  \frac { 4} {3} } \\

 \sf{  =  16 - 12+  \frac { 4} {3} } \\

 \sf{  = 4+  \frac { 4} {3} } \\

 \sf{   =   \frac { 16} {3} } \\

 \sf{   =5   \frac { 1} {3} } \:  \bf{Ans}. \\

Similar questions