Answers
Question
Find the value of 'k' in the equation ⇒
Answer
Let's solve your equation step-by-step.
Step 1: Simplify both sides of the equation.
⇒
Step 2: Subtract from both sides.
⇒
⇒
Step 3: Factor left side of equation.
⇒
Step 4: Set factors equal to 0.
⇒
⇒
Let's verify step-by-step.
First instance where k=0
⇒
⇒
⇒
⇒
Second instance where k = ³⁵/₃
⇒
⇒
⇒
⇒
⇒
⇒
⇒
∴LHS=RHS is both the cases.
Step-by-step explanation:
Question
Find the value of 'k' in the equation ⇒ \frac{1}{4}k = 3(\frac{-1}{4}k+3)k
4
1
k=3(
4
−1
k+3)k
\rule{300}{1}
Answer
Let's solve your equation step-by-step.
\frac{1}{4}k = 3(\frac{-1}{4}k+3)k
4
1
k=3(
4
−1
k+3)k
Step 1: Simplify both sides of the equation.
⇒ \frac{1}{4}k = \frac{-3}{4}k^{2}+9k
4
1
k=
4
−3
k
2
+9k
Step 2: Subtract \frac{-3}{4} k^{2}+9k
4
−3
k
2
+9k from both sides.
⇒ \frac{1}{4}k - (\frac{-3}{4} k^{2}+9k)= \frac{-3}{4}k^{2}+9k-(\frac{-3}{4} k^{2}+9k)
4
1
k−(
4
−3
k
2
+9k)=
4
−3
k
2
+9k−(
4
−3
k
2
+9k)
⇒ \frac{3}{4}k^{2}+\frac{-35}{4}k=0
4
3
k
2
+
4
−35
k=0
Step 3: Factor left side of equation.
⇒ k(\frac{3}{4}k+\frac{-35}{4})=0k(
4
3
k+
4
−35
)=0
Step 4: Set factors equal to 0.
⇒ k=0\ or \ \frac{3}{4}k +\frac{-35}{4} =0k=0 or
4
3
k+
4
−35
=0
⇒ k=0 \ or \ k=\frac{35}{3}k=0 or k=
3
35
Let's verify step-by-step.
First instance where k=0
⇒ \frac{1}{4}k = 3(\frac{-1}{4}k+3)k
4
1
k=3(
4
−1
k+3)k
⇒ \frac{1}{4}\times 0 = 3(\frac{-1}{4}\times 0 +3)\times 0
4
1
×0=3(
4
−1
×0+3)×0
⇒ 0=3(0)(0)0=3(0)(0)
⇒ 0=00=0
Second instance where k = ³⁵/₃
⇒ \frac{1}{4}k = 3(\frac{-1}{4}k+3)k
4
1
k=3(
4
−1
k+3)k
⇒ \frac{1}{4}\times \frac{35}{3} = 3(\frac{-1}{4}\times \frac{35}{3} +3)\times \frac{35}{3}
4
1
×
3
35
=3(
4
−1
×
3
35
+3)×
3
35
⇒ \frac{35}{12} = 3(\frac{-35}{12} +3)\times \frac{35}{3}
12
35
=3(
12
−35
+3)×
3
35
⇒ \frac{35}{12} = 3(\frac{-35}{12} +\frac{36}{12} )\times \frac{35}{3}
12
35
=3(
12
−35
+
12
36
)×
3
35
⇒ \frac{35}{12} = 3\times \frac{1}{12} \times \frac{35}{3}
12
35
=3×
12
1
×
3
35
⇒ \frac{35}{12} = \frac{105}{36}
12
35
=
36
105
⇒ \frac{35}{12} = \frac{35}{12}
12
35
=
12
35
∴LHS=RHS is both the cases.
\bf \therefore k=0 \ or \ k=\frac{35}{3}\ in \ the \ equation = > \ \frac{1}{4}k = 3(\frac{-1}{4}k+3)k∴k=0 or k=
3
35
in the equation=>
4
1
k=3(
4
−1
k+3)k
\rule{300}{1}