Math, asked by nesroy08, 2 days ago


 -  \frac{1}{4}  \leqslant  \frac{1}{2}  -  \frac{x}{3}  < 2

Solve the Linear Inequality.​

Answers

Answered by suchismitadash7542
0

Step-by-step explanation:

1st take left side

 \frac{ - 1}{4}  \leqslant  \frac{1}{2}  -  \frac{x}{3}  \\  =  >  \frac{ - 1}{4}  \leqslant  \frac{3 - 2x}{6}  \\  =  >  - 6 \leqslant 4(3 - 2x) \\  =  >  - 3 \leqslant 2(3 - 2x) = 6 - 4x \\  =  > 6 - 4x \geqslant  - 3 \\  =  > 6 - 4x + 3 \geqslant 0 \\  =  >  - 4x + 9 \geqslant 0 \\  =  > 4x - 9 \leqslant 0

next come to 2nd part

 \frac{1}{2}  -  \frac{x}{3}  < 2 \\  =  >  \frac{3 - 2x}{6}  < 2 \\  =  > 3 - 2x  < 12 \\  =  > 12 - 3 + 2x > 0 \\  =  > 2x + 9 > 0

Similar questions