simplify it
Answers
Answer:
Here's ur answer mate:-
As per the information provided in the question, We have :
\begin{gathered} \longmapsto \rm \dfrac{1 + \dfrac{1 }{ \cos(x) } }{ \dfrac{1}{ \cos(x) } }\\\\\end{gathered}
⟼
cos(x)
1
1+
cos(x)
1
We are asked to simplify it.
Using the fraction rule i.e a/b/c = a × c/b, Thus,
\begin{gathered} \\\longmapsto \rm \dfrac{1 + \dfrac{1 }{ \cos(x) } }{ \dfrac{1}{ \cos(x) } }\\\\\end{gathered}
⟼
cos(x)
1
1+
cos(x)
1
\begin{gathered}\longmapsto \rm 1 + \frac{1}{ \cos(x) } \times \frac{ \cos(x) }{1} \\\\\end{gathered}
⟼1+
cos(x)
1
×
1
cos(x)
\begin{gathered}\longmapsto \rm \bigg(1 + \frac{1}{ \cos(x) } \bigg) { \cos(x) } \\\\\end{gathered}
⟼(1+
cos(x)
1
)cos(x)
\begin{gathered}\longmapsto \rm (1 + \sec(x) ){ \cos(x) } \\\\\end{gathered}
⟼(1+sec(x))cos(x)
\begin{gathered}\longmapsto \rm 1 + \cos(x) \\\\\end{gathered}
⟼1+cos(x)
This can't be further simplified. Hence, It 1 + cos x is the required answer.
Learn more!
\begin{gathered}\begin{gathered}\qquad \sf \: ( I ) \:sin^2\:\theta \:+\:cos^2 \:\:=\:1\:\\\\\end{gathered}\end{gathered}
(I)sin
2
θ+cos
2
=1
\begin{gathered}\begin{gathered}\qquad \sf \: ( II ) \:sin^2\:\theta \:=\: 1 \:-\:cos^2 \:\:\:\\\\\end{gathered}\end{gathered}
(II)sin
2
θ=1−cos
2
\begin{gathered}\begin{gathered}\qquad \sf \: ( III ) \:\:cos^2 \:\:=\:1 \:-\:sin^2\:\theta \:\\\\\end{gathered}\end{gathered}
(III)cos
2
=1−sin
2
θ
\begin{gathered}\begin{gathered}\qquad \sf \: ( IV ) \:\:\:1 \:+\:cot^2\:\theta \:=\: cosec^2\:\theta \:\\\\\end{gathered}\end{gathered}
(IV)1+cot
2
θ=cosec
2
θ
\begin{gathered}\begin{gathered}\qquad \sf \: ( V ) \:\:\:cosec^2\:\theta \:-\:cot^2\:\theta \:=\: 1 \:\\\\\end{gathered}\end{gathered}
(V)cosec
2
θ−cot
2
θ=1
\begin{gathered}\begin{gathered}\qquad \sf \: ( VI ) \:\:\:cosec^2\:\theta \:=\:cot^2\:\theta \:+\: 1 \:\\\\\end{gathered}\end{gathered}
(VI)cosec
2
θ=cot
2
θ+1