Math, asked by adityaayushi2712, 1 month ago


\frac{1 + \frac{1 }{ \cos(x) } }{ \frac{1}{ \cos(x) } }
simplify it​

Answers

Answered by Anonymous
16

Answer:

1 + cosx

Step-by-step explanation:

As per the information provided in the question, We have :

  •  \longmapsto \rm \dfrac{1 + \dfrac{1 }{ \cos(x) } }{ \dfrac{1}{ \cos(x) } }\\\\

We are asked to simplify it.

Using the fraction rule i.e a/b/c = a × c/b, Thus,

 \\\longmapsto \rm \dfrac{1 + \dfrac{1 }{ \cos(x) } }{ \dfrac{1}{ \cos(x) } }\\\\

\longmapsto \rm 1 +  \frac{1}{ \cos(x) } \times  \frac{ \cos(x) }{1}  \\\\

\longmapsto \rm  \bigg(1 +  \frac{1}{ \cos(x) } \bigg) { \cos(x) } \\\\

\longmapsto \rm (1 +   \sec(x) ){ \cos(x) } \\\\

\longmapsto \rm 1 +  \cos(x) \\\\

This can't be further simplified. Hence, It 1 + cos x is the required answer.

Learn more!

  • \begin{gathered}\qquad \sf \: ( I ) \:sin^2\:\theta \:+\:cos^2 \:\:=\:1\:\\\\\end{gathered}

  • \begin{gathered}\qquad \sf \: ( II ) \:sin^2\:\theta \:=\: 1 \:-\:cos^2 \:\:\:\\\\\end{gathered}

  • \begin{gathered}\qquad \sf \: ( III ) \:\:cos^2 \:\:=\:1 \:-\:sin^2\:\theta \:\\\\\end{gathered}

  • \begin{gathered}\qquad \sf \: ( IV ) \:\:\:1 \:+\:cot^2\:\theta \:=\: cosec^2\:\theta \:\\\\\end{gathered}

  • \begin{gathered}\qquad \sf \: ( V ) \:\:\:cosec^2\:\theta \:-\:cot^2\:\theta \:=\: 1 \:\\\\\end{gathered}

  • \begin{gathered}\qquad \sf \: ( VI ) \:\:\:cosec^2\:\theta \:=\:cot^2\:\theta \:+\: 1 \:\\\\\end{gathered}
Similar questions