Math, asked by ThatCloverGirl, 10 months ago


 \frac{1}{ \sec(a) - 1 } -  \frac{1}{ \ \sec(a) + 1 }  = 2 \csc(a)  \cot(a) Please solve this sum for me.

Answers

Answered by kaushik05
105

 \huge \red{ \mathfrak{solution}}

Correct question .

To prove:

 \boxed{  \bold{\green{ \frac{1}{ \sec( \alpha )  - 1}   +   \frac{1}{ \sec( \alpha )  + 1}  = 2  \csc( \alpha )  \cot( \alpha )}}  }

LHS

 \leadsto \frac{1}{ \sec( \alpha ) - 1 }   +  \frac{1}{ \sec( \alpha ) + 1 }  \\  \\  \leadsto \:  \frac{ \sec( \alpha ) + 1  +  \sec( \alpha )  - 1  }{ \sec ^{2} ( \alpha )  - 1}  \\  \\  \leadsto \:  \frac{ 2  \sec( \alpha ) }{ {sec}^{2}  \alpha  - 1}  \\  \\  \leadsto \:  \frac{2 \sec( \alpha ) }{ \tan ^{2}  ( \alpha ) }  \\  \\  \leadsto \: 2  \sec( \alpha ) \cot ^{2} ( \alpha )   \\  \\  \leadsto \: 2 \times  \frac{1}{ \cos( \alpha ) }  \times  \frac{ \cos( \alpha ) }{ \sin( \alpha ) }  \times  \cot( \alpha )  \\  \\  \leadsto \: 2 \times  \cancel \frac{ \cos( \alpha ) }{ \cos( \alpha ) }  \times  \frac{1}{ \sin( \alpha ) }  \times  \cot( \alpha )  \\  \\  \leadsto \: 2 \csc( \alpha )  \cot( \alpha )

LHS=RHS

 \huge \mathfrak{proved}

Formula used :

 \boxed{\longrightarrow \blue{ { \sec }^{2}  \alpha  -  {tan}^{2}  \alpha  = 1} }\\  \\  \boxed{\longrightarrow \purple{ \cot( \alpha )  =  \frac{ \cos( \alpha ) }{ \sin( \alpha ) }}}  \\  \\  \boxed{\longrightarrow \pink{ \frac{1}{ \sin( \alpha ) }  =  \csc( \alpha )}}

Answered by Anonymous
31

1/sec-1+1/sec+1

=sec+1+sec-1/sec^2-1

=2sec/tan^2

=2×1/cos×cot^2

=2×1/cos×cos/sin×cot

=2csc cot

Similar questions