Math, asked by sweta56721, 3 months ago

:\:\frac{1 + sinA - cosA}{1 + sinA + cosA} =   \: =  \:  \: \sqrt{\frac{ 1 - cosA}{1 + cosA}}

Answers

Answered by shaun12352
1
Solve this
This is the answer
Attachments:
Answered by Anonymous
38

Solution -

\tt\dashrightarrow{\dfrac{1+\sin\theta-\cos \theta}{1+\sin\theta+\cos \theta}= \sqrt{\dfrac{1-\cos\theta}{1+\cos\theta}}}

Squaring both the sides

\tt\dashrightarrow{\bigg( \dfrac{1+\sin\theta-\cos \theta}{1+\sin\theta+\cos \theta} \bigg)^2 = \bigg( \sqrt{\dfrac{1-\cos\theta}{1+\cos\theta}} \bigg)^2}

\tt\dashrightarrow{ \bigg( \dfrac{1+\sin\theta-\cos \theta}{1+\sin\theta+\cos \theta} \bigg)^2 = \dfrac{1-\cos\theta}{1+\cos\theta}}

Solving L.H.S

\tt\dashrightarrow{\bigg( \dfrac{1+\sin\theta-\cos \theta}{1+\sin\theta+\cos \theta} \bigg)^2}

\tt\dashrightarrow{\dfrac{1+1+2\sin\theta-2\sin\theta\cos\theta-2\cos\theta}{1+1+2\sin\theta+2\sin\theta\cos\theta+2\cos\theta}}

\tt\dashrightarrow{\dfrac{2(1+\sin\theta)-2\cos\theta(1+\sin\theta)}{2(1+\sin\theta)+2\cos\theta(1+\sin\theta)}}

\tt\dashrightarrow{\dfrac{(1+\sin\theta)(2-2\cos\theta)}{(1+\sin\theta)(2+2\cos\theta)}}

\tt\dashrightarrow{\dfrac{2(1-\cos\theta)}{2(1+\cos\theta)}}

\tt\dashrightarrow{\dfrac{(1-\cos\theta)}{(1+\cos\theta)}}

\tt\dashrightarrow{L.H.S = R.H.S}

Hence proved

━━━━━━━━━━━━━━━━━━━━━━


Anonymous: Nice
Similar questions