Math, asked by menishray13, 7 months ago


 \frac{1}{ \sqrt{2}  +  \sqrt{3} +  \sqrt{5}  }
Rationalise the denominator.

❌DON'T SPAM ❌

DO THIS IN A PAPER.​

Answers

Answered by ANGRY74
77

Here is your answer! Hope it helps! :)

I'll give uh full ans personally! due to some connection problem I'm unable to attach full answer! Hope uh understand! :)

Attachments:
Answered by Anonymous
25

{\huge{\boxed{\bf{ANSWER}}}}

To Rationalize the denominator of -

 \longrightarrow \frac{1}{ \sqrt{2}  +  \sqrt{3} +  \sqrt{5}  }

Solution -

Consider (√2 + √3 ) as a single term ..

 \implies \:  \frac{1}{( \sqrt{2} +  \sqrt{3}) +  \sqrt{5}   }

Now , Multiply and divide by its conjugate..

 \implies \:  \frac{1}{( \sqrt{2} +  \sqrt{3} ) +  \sqrt{5}  }  \times  \frac{( \sqrt{2} +  \sqrt{3}) -  \sqrt{5}   }{ (\sqrt{2}  +  \sqrt{3}) -  \sqrt{5}  }

 \implies \:  \frac{ \sqrt{2} +  \sqrt{3}   -  \sqrt{5} }{ {( \sqrt{2}  +  \sqrt{3} )}^{2} -  {( \sqrt{5} )}^{2}  }

 \implies \:  \frac{ \sqrt{2}  +  \sqrt{3} -  \sqrt{5}  }{2 + 3 + 2 \sqrt{6}  - 5}

 \implies \frac{ \sqrt{2}  +  \sqrt{3}  -  \sqrt{5} }{2 \sqrt{6} }

Still , it's not rationalized as , we have square root term in denominator...

so, multiply & divide by √6

 \implies \:  \frac{ (\sqrt{2} +  \sqrt{3}  -  \sqrt{5}  ) \times  \sqrt{6} }{2 \sqrt{6}  \times  \sqrt{6} }

 \implies \:  \frac{ \sqrt{12}  +  \sqrt{18} -  \sqrt{30}  }{12}

 \implies \:  \frac{2 \sqrt{3} + 3 \sqrt{2}  -  \sqrt{30}  }{12}

Similar questions