Math, asked by dhruvpayasi650, 5 months ago


 \frac{1}{ \sqrt{2} +  \sqrt{3} +  \sqrt{5}   }
Rationalise the denominator​

Answers

Answered by Ranveerx107
1

 \frac{1}{ \sqrt{2} +  \sqrt{3} +  \sqrt{5}   }  \\  \\  \frac{1}{ \sqrt{2}  +  \sqrt{3}  +  \sqrt{5} }  \times  \frac{( \sqrt{2 } +  \sqrt{3}    -  \sqrt{5}) }{( \sqrt{2} +  \sqrt{3}  -  \sqrt{5}  )}  \\  \\  \frac{ \sqrt{2} +  \sqrt{3} -  \sqrt{5}   }{( \sqrt{2} +  \sqrt{3}  +  \sqrt{5} )( \sqrt{2}  +  \sqrt{3}   -  \sqrt{5} )}  \\  \\ using \: (a - b)(a + b) = a {}^{2}  - b {}^{2}

  \frac{ \sqrt{2} +  \sqrt{3} -  \sqrt{5}   }{ (\sqrt{2}  +  \sqrt{3} ) {}^{2}  - 5}  \\  \\  using \:  \: (a + b)(a - b) =  {a}^{2}  - b {}^{2}  \\  \\  \frac{ \sqrt{2} +  \sqrt{3}   -  \sqrt{5} }{2 + 2 \sqrt{6}   + 3- 5}  \\  \\  \frac{ \sqrt{2} +  \sqrt{3}   -  \sqrt{5} }{0 + 2 \sqrt{6} }  \\  \\  \frac{ \sqrt{2} +  \sqrt{3}   -  \sqrt{5} }{2 \sqrt{6} }  \\  \\ rationalize \: the \: denominator \\  \\  \frac{ \sqrt{2} +  \sqrt{3}   -  \sqrt{5} }{2 \sqrt{6} }  \times  \frac{ \sqrt{6} }{ \sqrt{6} }  \\  \\  \frac{(  \sqrt{2}   +  \sqrt{3} -  \sqrt{5} )( \sqrt{6})  }{2 \sqrt{6}  \sqrt{6} }  \\  \\  \frac{( \sqrt{2} +  \sqrt{3}   -  \sqrt{5} )( \sqrt{6}) }{2( { \sqrt{6} )}^{2} }  \\  \\  \frac{ \sqrt{12}  +  \sqrt{18}  -   \sqrt{30}  }{2 \times 6}  \\  \\  \frac{ 2\sqrt{3} +  \sqrt{18} -  \sqrt{30}   }{12}

Answered by Xxunkn0wnxX
1

Step-by-step explanation:

\begin{gathered} \frac{1}{ \sqrt{2} + \sqrt{3} + \sqrt{5} } \\ \\ \frac{1}{ \sqrt{2} + \sqrt{3} + \sqrt{5} } \times \frac{( \sqrt{2 } + \sqrt{3} - \sqrt{5}) }{( \sqrt{2} + \sqrt{3} - \sqrt{5} )} \\ \\ \frac{ \sqrt{2} + \sqrt{3} - \sqrt{5} }{( \sqrt{2} + \sqrt{3} + \sqrt{5} )( \sqrt{2} + \sqrt{3} - \sqrt{5} )} \\ \\ using \: (a - b)(a + b) = a {}^{2} - b {}^{2} \end{gathered}

Similar questions