Math, asked by pkst, 9 months ago


 \frac{1}{ \sqrt{9 }  - \sqrt{ 8}  }  \:  \:  \: is \: equal \: to

Answers

Answered by vedantvispute38
2

Answer:

√9 + √8

Step-by-step explanation:

 \frac{1}{ \sqrt{9}  -  \sqrt{8} }  =  \frac{1}{ \sqrt{9}  -  \sqrt{8} } \times  \frac{ \sqrt{9}   +  \sqrt{8}  }{ \sqrt{9}  +  \sqrt{8} }  \\  =  \frac{ \sqrt{9}  +  \sqrt{8} }{9 - 8}  \\  =  \sqrt{9}  +  \sqrt{8}

The Rationalising Factor of √9 -√8 is √9+√8

We know that (a+b)(a-b) = a^2 - b^2

This will eliminate the roots making the denominator rational.

Answered by Anonymous
1

Answer:

fr ta lgda ohnu inbox krk koi fida ni

ohne chat ta krni ni ta block hi krna pena baki tu ds and e 3rd moderator aa jisnu me inbox kitta aa

Similar questions