A) 1
B) 2
C) 3
D) 4
Answers
To Find :-
- (1 + Tan13°)(1+Tan32°) / (1+Tan12°)(1+Tan33°)
Solution :-
we know That, if A + B = 45° ,
Than , (1 + tanA)(1 + tanB) = 2.
→ in Numerator we have A = 13° , B = 32°
and, A + B = 13+32 = 45° .
→ Similarly, in Denominator, A = 12° , B = 33°
and, again A + B = 12+33 = 45° .
So, We can say That,
→ (1 + Tan13°)(1+Tan32°) = 2
→ (1+Tan12°)(1+Tan33°) = 2
Putting Both Values we get,
→ 2/2
→ 1 (Ans).
_____________________________
Extra Knowledge :-
Lets Try to Prove This Formula now :-
→ A + B = 45°
→ tan(A + B) = tan45°
→ (tanA + tanB)/(1 - tanA*tanB) = 1
→ (tanA + tanB) = (1 - tanA*tanB)
→ tanA + tanB + tanA*tanB = 1
Adding 1 both sides ,
→ (tanA + 1) + (tanB + tanA*tanB) = 2
→ (tanA + 1) + tanB(1 + tanA) = 2
→ (tanA + 1)( 1 + tanB) = 2
→ (1 + tanA)(1 + tanB) = 2 (Proved).
_____________________________
____________________________________________
We know that if,
(A+B)= 45°
Than,
(1+tanA + tanB) =2
___________________________________________
In the position of numerator we have,
A=13°
B =32°
=> A+B = 13°+32°=45°
___________________________________________
In the position of denominator we have,
A=12° B =33°
=> A + B =45°
____________________________________________
We can also say that,
=> (1+tan12°)+(1+tan33°)=2
____________________________________________
putting both values together,
=> 2/2