Math, asked by noshitha1204, 1 year ago


 \frac{1}{x + 1} +  \frac{1}{x + 2}  =  \frac{4}{x + 4}
X is not equal to -1,-2,-4
answer: 2 or ± 2√3

Answers

Answered by BrainlyConqueror0901
35

{\bold{\underline{\underline{Answer:}}}}

\\{\bold{\therefore x=\frac{-1\pm\sqrt{33}}{4}}}\\

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline \bold{Given : } \\  \implies  \frac{1}{x + 1}  +  \frac{1}{x + 2}  =  \frac{4}{x  + 4}  \\  \\ \underline \bold{To \: Find : } \\   \implies value \:of \: x =?

• According to given question :

 \implies  \frac{1}{x + 1}  +  \frac{1}{x + 2}  =  \frac{4}{x + 4}  \\\\\bold{Taking\:LCM\:in\:LHS}  \\  \implies  \frac{x + 2 + x + 1}{(x + 1)(x + 2)}  =  \frac{4}{x + 4}  \\  \\  \implies  \frac{2x + 3}{ {x}^{2} + 3x + 2 }  =  \frac{4}{x + 4}  \\  \\  \implies  (2x + 3)(x + 4) = 4 {x}^{2}  + 12x  + 8 \\  \\  \implies  {2x}^{2}  + 8x + 3x + 12 = 4 {x}^{2}  + 12x + 8 \\  \\  \implies  {4x}^{2}  -  {2x}^{2}  + 12x - 11x + 8 - 12 = 0 \\  \\  \implies  {2x}^{2}  + x - 4 = 0 \\  \\  \bold{Using \: Quadratic \: formula : } \\  \implies x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\  \implies x =  \frac{ - 1 \pm \sqrt{ {1}^{2}  - 4 \times 2  \times  - 4} }{2 \times 2}  \\  \\  \implies x =  \frac{ - 1 \pm \sqrt{1 + 32} }{4}  \\  \\   \bold{\implies x =  \frac{ - 1 \pm \sqrt{33} }{4}}

Answered by Anonymous
22

Answer____

 \bold{x =  \frac{ - 1 \pm \sqrt{33} }{4} }

Step-by-step explanation :

 \implies  \frac{1}{x + 1}  +  \frac{1}{x + 2}  =  \frac{4}{x + 4}  \\  \\  \implies  \frac{x + 2 + x + 1}{(x + 1)(x + 2)}  =  \frac{4}{x + 4}  \\  \\  \implies  \frac{2x + 3}{ {x}^{2} + 3x + 2 }  =  \frac{4}{x + 4}  \\  \\  \implies  (2x + 3)(x + 4) = 4 {x}^{2}  + 12x  + 8 \\  \\  \implies  {2x}^{2}  + 8x + 3x + 12 = 4 {x}^{2}  + 12x + 8 \\  \\  \implies  {4x}^{2}  -  {2x}^{2}  + 12x - 11x + 8 - 12 = 0 \\  \\  \implies  {2x}^{2}  + x - 4 = 0 \\  \\ \implies x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\  \implies x =  \frac{ - 1 \pm \sqrt{ {1}^{2}  - 4 \times 2  \times  - 4} }{2 \times 2}  \\  \\  \implies x =  \frac{ - 1 \pm \sqrt{1 + 32} }{4}  \\  \\   \bold{\implies x =  \frac{ - 1 \pm \sqrt{33} }{4}}

Similar questions