Math, asked by dolldolldoll, 5 months ago


 \frac{1}{x + 1} +  \frac{2}{x + 2} =  \frac{4}{x + 4}

Answers

Answered by SparklingBoy
2

Answer:

This equation firstly will be reduced to a simple quadratic equation

as:-)

 \large \frac{1}{x + 1}  +  \frac{2}{x + 2}  =  \frac{4}{x + 4}  \\  \\  \large \frac{x + 2 + 2x + 2}{(x + 1)(x + 2)}  =  \frac{4}{x + 4}  \\  \\   \large\frac{3x + 4}{ {x}^{2}  + 3x + 2}  =  \frac{4}{x + 4}

Now,

cross multiplying we get,

3 {x}^{2}  +  \cancel{12x} + 4x + 16 = 4 {x}^{2}  + \cancel {12x} + 8 \\  \\  {x }^{2}  - 4x - 8 = 0

Now we can solve it as:-)

 {x}^{2}  - 4x - 8 = 0 \\  \\ x =   \large\frac{ 4 \pm \sqrt{16 + 32} }{2}  \\  \\  = \large \frac{4 \pm \sqrt{48} }{2}  \\  \\  =  \large \frac{4 \pm4 \sqrt{3} }{2}  \\  \\  =  \large 2(1  \pm \sqrt{3} )

Which is reqrd solution

Similar questions
Hindi, 2 months ago