Math, asked by kunal779, 1 year ago


 \frac{1}{x + 4} -  \frac{1}{x - 7} =  \frac{11}{30}

Answers

Answered by Anonymous
4

Answer:

\tt {\frac {1}{x+4} - \frac {1}{x-7} = \frac {11}{30}}\\

Taking the LCM :

\tt {\frac {x-7-x-4}{x^{2}-7x+4x-28} = \frac {11}{30}}\\

=》 \tt {\frac {-11}{x^{2}-3x-28} = \frac {11}{30}}\\

Cross multiplying :

=》 \tt {11x^{2} - 33x - 308 = -330}

=》 \tt {11x^{2} - 33x + 22}

Divide the equation by 11 :

=》 \tt {x^{2} - 3x + 2=0}

Find the zeroes of this quadratic polynomial :

=》 \tt {x^{2} - 2x - x + 2=0}

=》 \tt {x = 1,2}

Answered by BrainlyVirat
4

Answer : x = 1 or x = 2

Step by step explanation :

 \tt{ \frac{1}{x + 4}  -  \frac{1}{x - 7}  =  \frac{11}{30}}

 \tt {\frac{(x - 7) - (x + 4)}{(x + 4)(x - 7)}  =  \frac{11}{30}}

  \tt{\frac{x - 7 - x - 4}{(x + 4)(x - 7)}}  =  \frac{11}{30}

  \tt{\frac{ - 11}{ {x}^{2}  + 4x - 7x - 28} }  =  \frac{11}{30}

 \tt{ - 30 = x {}^{2}  - 3x - 28}

 \tt{x {}^{2}  - 3x - 28 + 30 = 0}

 \tt{x {}^{2}  - 3x + 2 = 0}

 \tt { {x}^{2} - 2x - x + 2 = 0}

 \tt{x(x - 2) - 1(x - 2) = 0}

 \tt{(x - 1)(x - 2) = 0}

 \tt{x = 1 \:  \: or \:  \: x = 2}

Thus,

Value of x is either 1 or 2.

x = 1 or x = 2

Similar questions