Math, asked by bujulasaraswathi803, 10 months ago

 \frac{1}{ {x}^{a - b} + 1} + \frac{1}{ {x}^{b - a} + 1}
​Please answer this question I will make you as brainlist

Answers

Answered by Cynefin
23

✰Answer✰

❋Before solving, Let discuss some important concepts of indices or exponents.

♦️Here are some important laws:

 \large{ \sf{ \star{ \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n} }}} \\  \\  \large{ \sf{ \star{ \:  {a}^{m}  \div  {a}^{n}  =  {a}^{m - n} }}} \\  \\  \large{ \sf{ \star{ \: ({a}^{m} ) {}^{n}  =  {a}^{mn} }}} \\  \\  \large{ \sf{ \star{ \:  {a}^{1}  = a}}} \\  \\  \large{ \sf{ \star{ \:  {a}^{0}  = 1}}} \\  \\  \large{ \sf{ \star{ \: ( { \frac{a}{b} })^{m}  =  \frac{ {a}^{m} }{ {b}^{m} } }}} \\  \\  \large{ \sf{ \star{ \:  {a}^{ - m}  =  \frac{1}{ {a}^{m} } }}} \\  \\  \large{ \sf{ \star{ \:  {a}^{ \frac{x}{y} }  =  \sqrt[y]{ {a}^{x} } }}}

☛By using these laws, we will find

Solution

 \large{ \sf{ \rightarrow \:  \frac{1}{1 +  {x}^{a - b}  }   \:  +  \:  \frac{1}{1 +  {x}^{b - a} } }}  \\  \\  \large{ \sf{  \rightarrow \:  \frac{1}{1 +  \frac{ {x}^{a} }{ {x}^{b} } }  \:  +  \:  \frac{1}{1 +  \frac{ {x}^{b} }{ {x}^{a} } } }} \\  \\  \large{ \sf{ \rightarrow \:  \frac{1}{ \frac{ {x}^{b} +  {x}^{a}  }{ {x}^{b} }} +  \frac{1}{ \frac{x {}^{a}  +  {x}^{b} }{ {x}^{a} } } }} \\  \\  \large{ \sf{ \rightarrow \:  \frac{ {x}^{b} }{ {x}^{a} +  {x}^{b}  }  \:  +  \:  \frac{ {x}^{a} }{ {x}^{a}  +  {x}^{b} } }} \\  \\  \large{ \sf{ \rightarrow \: \cancel{  \frac{ {x}^{a} +  {x}^{b} }{ {x}^{a} +  {x}^{b}  } }}} \\  \\  \large{ \sf{ \boxed{ \rightarrow \:  \boxed{ \purple{1}}}}}

So Final Answer

 \large{ \boxed{ \bf{ = 1}}}

Similar questions