Math, asked by manoswini, 1 year ago


 \frac{1}{x - a - b }  =  \frac{1}{x} -  \frac{1}{a}   -  \frac{1}{b}
Solve.....

Answers

Answered by abhi178
1

\frac{1}{x-a-b}= \frac{1}{x} -   \frac{1}{a}  -  \frac{1}{b}  \\  \\  \frac{1}{x - a - b}  -  \frac{1}{x}  =   - \frac{1}{a}  -  \frac{1}{b}  \\  \\  \frac{x - x + a + b}{ {x}^{2} - ax - bx }  =  \frac{ - (a + b)}{ab }  \\  \\  \frac{1}{ {x}^{2} - ax - bx }  =  \frac{ - 1}{ab}  \\  \\  {x}^{2}  - (a + b)x + ab = 0 \\  \\ x = a \:  \: and \:  \:  \: b

manoswini: If my teacher gives this answer correct.... Then I shall thank you....
abhi178: its correct
abhi178: 100%
manoswini: Okay...... Let me see....
manoswini: Thanks a lot.....But you missed some of the steps which someone corrected after you.....
Anonymous: Thx!
Answered by Anonymous
1
Heya user,

 \frac{1}{x-a-b}  = \: \frac{1}{x} \:-\: \frac{1}{a} \:-\: \frac{1}{b} \\ \frac{1}{x-a-b} -  \frac{1}{x} = - \frac{1}{a}  -  \frac{1}{b} \\  \frac{x-(x-a-b)}{ x^{2} -ax-bx} =  -\frac{a+b}{ab}  \\  \frac{a+b}{ x^{2} -ax-bx} = -\frac{a+b}{ab} \\ x^{2} -ax-bx = -ab \\ x^{2} -ax-bx + ab =0 \\ x(x-a) - b(x-b) = 0 \\(x-a)(x-b)=0\\x=a,x=b;

Hope your teacher remarks your answer... :)

manoswini: Thank you so much
Similar questions