Math, asked by StudyLover14, 2 months ago


 \frac{1 + x +  {x}^{2} }{1 - x +  {x}^{2} }  =  \frac{13(1 + x)}{14(1 - x)}
Find the value of x..

(a) \frac{1}{3}
(b)3
(c) \frac{2}{3}
(d) \frac{3}{2}

Answers

Answered by ItZzKhushi
8

{\huge{\underbrace{\overbrace{\color{aqua} {Question}}}}}

 \frac{1 + x +  {x}^{2} }{1 - x +  {x}^{2} }  =  \frac{13(1 + x)}{14(1 - x)}

Find the value of x..

(a) \frac{1}{3}

(b)3

(c) \frac{2}{3}

(d) \frac{3}{2}

\huge{\mathcal{\underline\red{Answer}}}

⇒ \frac{1 + x +  {x}^{2} }{1 - x +  {x}^{2} }  =  \frac{13(1 + x)}{14(1 - x)}

Do cross multiply

⇒(1 + x +  {x}^{2} ) \times 14(1 - x) = (1 - x +  {x}^{2} ) \times 13(1 + x)

⇒14(1 -  {x}^{3} ) = 13(1 +  {x}^{3})

⇒14 - 14 {x}^{3}  = 13 + 13 {x}^{3}

⇒1 = 27 {x}^{3}

⇒ \frac{1}{27}  =  {x}^{3}

⇒( \frac{1}{3} )^{3}  =  {x}^{3}

⇒x =  \frac{1}{3}

Answered by BrainlyButterfly57
0

Answer:

1−x+x

2

1+x+x

2

=

14(1−x)

13(1+x)

Do cross multiply

⇒(1 + x + {x}^{2} ) \times 14(1 - x) = (1 - x + {x}^{2} ) \times 13(1 + x)⇒(1+x+x

2

)×14(1−x)=(1−x+x

2

)×13(1+x)

⇒14(1 - {x}^{3} ) = 13(1 + {x}^{3}) ⇒14(1−x

3

)=13(1+x

3

)

⇒14 - 14 {x}^{3} = 13 + 13 {x}^{3} ⇒14−14x

3

=13+13x

3

⇒1 = 27 {x}^{3} ⇒1=27x

3

⇒ \frac{1}{27} = {x}^{3} ⇒

27

1

=x

3

⇒( \frac{1}{3} )^{3} = {x}^{3} ⇒(

3

1

)

3

=x

3

⇒x = \frac{1}{3} ⇒x=

3

1

Similar questions