Math, asked by Anonymous, 2 months ago

-  \frac{2}{5}  \times  \frac{3}{5}  +  \frac{5}{2}  -  \frac{3}{5}  \times  \frac{1}{6} \  \textless \ br /\  \textgreater \ \  \textless \ br /\  \textgreater \ [tex]\frac{2}{5}  \times ( -  \frac{3}{7} ) -  \frac{1}{6}  \times  \frac{3}{2}  +  \frac{1}{14}  \times  \frac{2}{5}

Help me pleass @shirley and my followings​

Attachments:

Answers

Answered by Anonymous
70

Step by step Explanation -

(i)

\dashrightarrow \sf \: \bigg\{\dfrac{7}{5} \times \bigg(  \dfrac{ - 3}{12} \bigg) \bigg\} + \bigg\{ \dfrac{7}{5}  \times  \dfrac{5}{12} \bigg\} \\  \\  \\\dashrightarrow\sf \:  \dfrac{7}{5} \times \bigg\{ \dfrac{ - 3}{12} + \dfrac{5}{12} \bigg\} \\  \\  \\ \dashrightarrow \sf \dfrac{7}{5}  \times \bigg\{  \dfrac{ - 3 + 5}{12} \bigg\} \\  \\  \\ \dashrightarrow\sf  \dfrac{7}{5}  \times \dfrac{2}{12} \\  \\  \\  \dashrightarrow   \underline{\boxed{\sf{ \red{ \dfrac{7}{30} }}}}

⠀⠀⠀_________________________

(ii)

\dashrightarrow \sf\: \bigg\{\dfrac{9}{16} \times \dfrac{ 4}{12}  \bigg\} + \bigg\{ \dfrac{9}{16}  \times  \dfrac{ - 3}{9} \bigg\} \\\\\\\dashrightarrow\sf \:\dfrac{9}{16} \times \bigg\{ \dfrac{ 4}{12} + \dfrac{ - 3}{9} \bigg\} \\\\\\ \dashrightarrow \sf \dfrac{9}{16}  \times \bigg\{  \dfrac{ 12 +  -( 12)}{36}\bigg\} \\\\\\\dashrightarrow\sf  \dfrac{9}{12}  \times \dfrac{0}{36} \\\\\\\dashrightarrow   \underline{\boxed{\sf{ \red{ {0} }}}}

⠀⠀⠀_________________________

Part 2:-

(i)

\dashrightarrow\sf- \dfrac{2}{5} \times \dfrac{3}{5} + \dfrac{5}{2} - \dfrac{3}{5} \times \dfrac{1}{6} \\\\\\  \dashrightarrow \sf \dfrac{ - 2}{3}  \times \dfrac{3}{5}  -  \dfrac{3}{5}  \times  \dfrac{1}{6}  +  \dfrac{5}{2}  \\  \\\\  \dashrightarrow\sf \dfrac{ - 3}{5}  \bigg( \dfrac{2}{3}  + \dfrac{1}{6}  \bigg) +  \dfrac{5}{2}\\ \\ \\  \dashrightarrow \sf \dfrac{ - 3}{5}\bigg( \dfrac{4 + 1}{6}  \bigg) +  \dfrac{5}{2}  \\ \\\\  \dashrightarrow \sf \frac{ - 3}{5}  \times \dfrac{5}{6}  +  \dfrac{5}{2}  \\ \\\\  \dashrightarrow \sf \dfrac{ - 1}{2}  +  \dfrac{5}{2}  \\ \\ \\  \dashrightarrow \sf \dfrac{ - 1 + 5}{2}  \\  \\  \\\dashrightarrow \sf \dfrac{4}{2} \\ \\\\  \dashrightarrow  \underline{\boxed{\sf{ \red{2}}}}

⠀⠀⠀_________________________

(ii)

\dashrightarrow\sf \:  \: \dfrac{2}{5} \times ( - \dfrac{3}{7} ) - \dfrac{1}{6} \times \dfrac{3}{2} + \dfrac{1}{14} \times \dfrac{2}{5} \\  \\  \\  \dashrightarrow \sf \dfrac{2}{5}  \times \dfrac{ - 3}{7}  + \dfrac{1}{14}  \times  \dfrac{2}{5}  -  \dfrac{1}{6}  \times  \dfrac{3}{2} \\ \\\\  \dashrightarrow \sf \dfrac{2}{5}  \bigg( \dfrac{ - 3}{7}  +  \frac{1}{14}  \bigg) -  \dfrac{1}{6}  \times \dfrac{3}{2}  \\  \\  \\  \dashrightarrow \sf \dfrac{2}{5}  \bigg(  \dfrac{ - 6 + 1}{14}  \bigg) - \dfrac{1}{6}  \times \dfrac{3}{2}  \\  \\  \\  \dashrightarrow \sf \dfrac{2}{5}  \times  \dfrac{ - 5}{14}  -  \dfrac{1}{6}  \times  \dfrac{3}{2}  \\  \\  \\  \dashrightarrow \sf \: { \dfrac{ - 1}{7}  -  \dfrac{1}{4} } \\  \\  \\  \dashrightarrow \sf \frac{ - 4 - 7}{28}  \\  \\  \\  \dashrightarrow  \underline{ \boxed{\sf { \red{\dfrac{ - 11}{28}} }}}

⠀⠀⠀_________________________

★ In part 2, we have solve both questions through commutative property then using distributive property..

_____________________________________________________

Similar questions