Math, asked by Anonymous, 10 months ago


 \frac{2}{ \sqrt{5} +  \sqrt{3 }  + 2 }
solve it I'll mark as the brainliest.​

Answers

Answered by RohanBabhale
2

Answer:

 \frac{2}{ \sqrt{5 }  +  \sqrt{3}  + 2}  =  \frac{2}{ \sqrt{5} +  \sqrt{3} + 2  }  \times  \frac{ \sqrt{5} +  \sqrt{3}  - 2  }{ \sqrt{5} +  \sqrt{3} - 2  }  \\  \\  \frac{2( \sqrt{5}  +  \sqrt{3} - 2) }{( \sqrt{5} +  \sqrt{3 }) ^{2} - 4   }  =  \frac{2( \sqrt{5} +  \sqrt{3} - 2)  }{2  +  \sqrt{15} }  \\  \\  = ( 2\sqrt{5}  -  \sqrt{75}  + 2 \sqrt{3}  -   \sqrt{45}  - 4 + 2 \sqrt{15} )  \div  - 11 \\  \\  =  \frac{ -  \sqrt{5} - 3 \sqrt{3} - 4 + 2 \sqrt{15}   }{11}  \\  \\ i \: hope \: this \: help \: you \: mark \:  \\ it\: as \: brainliest \: and \: follow \: me

Answered by overkill69
1

Answer:

The answer is

 \frac{ \sqrt{5} - 3 \sqrt{3}  - 4 +  \sqrt{15} }{11}

Similar questions