Math, asked by dilchhahte, 4 months ago

 \frac{24x ^{2}+ 25x - 47 }{ax - 2} = - 8x - 3 - \frac{53}{ax - 2} The above equation is true for all values of x ≠ 2/a , where a is constant. So what will be the...​

Answers

Answered by itzpriya22
4

\sf \underline {Given\: equation}:\\\\\sf \frac{24x^2+25x-47}{ax-2} = -8x-3 -\frac{53}{ax-2} \\\\\\ \sf \underline {Simplifying \: RHS \: first}:\\\\\\ \implies \frac{24x^2+25x-47}{ax-2} = -8x-3 -\frac{53}{ax-2} \\\\\\ \implies \frac{24x^2+25x-47}{ax-2} = -8x-3 \frac{(ax-2)}{(ax-2)} - \frac{53}{ax-2} \\\\\\ \implies \frac{24x^2+25x-47}{ax-2} = \frac{-8x-3 (ax-2)}{(ax-2)} - \frac{53}{ax-2} \\\\\\ \implies \frac{24x^2+25x-47}{ax-2} = \frac{-8ax^2+16x-3ax+6-53}{ax-2}\\\\

\sf \implies 24x^{2}+25x-47 =-8ax^{2}+16x-3ax-47 \\\\ \implies 24x^2+25x = -8ax^2+16x-3ax \\\\ \implies 24x^{2}+8ax^{2}+25x-16x+3ax=0\\\\ \sf \implies 24x^2+8ax^2+9x+3ax=0\\\\\sf \underline {Taking \: x \: in \: common}:\\\\\sf \implies x(24x+8ax+9+3a)=0 \\\\ \sf \underline {Factorizing}:\\\\ \implies x \bigg(8x(3+a)+3(3+a) \bigg)=0

\sf \underline {Taking \: (3+a) \:in \: common}:\\\\ \implies x((8x+3)(3+a))=0\\\\\sf \underline {Dividing \: both \: sides \: by \: x, \: to\:  remove \: the \: variable \: x}:\\\\ \implies (8x+3)(3+a)=0\\\\\sf \underline {Solving \: for \: a}:\\\\ \implies 3+a = 0\\ \implies a = -3\\

Similar questions