Math, asked by neerajamadhu75, 4 months ago


 \frac{25}{4} x {}^{2}  -  \frac{y {}^{2} }{9}


minimilitia3: [text] /frac hindi

Answers

Answered by harshitha926594
1

Answer:

 \frac{25 {x}^{2} }{4}  -  \frac{ {y}^{2} }{9}  \\  =  \frac{9(25 {x}^{2}) - 4( {y}^{2})  }{36}  \\  =  \frac{225 {x}^{2} - 4 {y}^{2}  }{36}  \\  \\ 225 \:  \: is \:  \:  \: the \:  \: square \:  \: of \:  \: 15 \\ 4\:  \: is \:  \:  \: the \:  \: square \:  \: of \:  \: 2 \\  {x}^{2} \:  \: is \:  \:  \: the \:  \: square \:  \: of \:  \: x \\  {y}^{2} \:  \: is \:  \:  \: the \:  \: square \:  \: of \:  \: y \\    \\  \frac{225 {x}^{2} - 4 {y}^{2}  }{36}   \\  By \:  \: using \:  \: the \:  \: Formula \:  \:  : \\  {a}^{2}  -  {b}^{2}  = (a + b)(a - b) \\  Final \:  \: Answer \:  \: is \:  \:  : \\     \large{\boxed { \underline {\underline {\frac{(15x + 2y)(15x - 2y)}{36} }}}}

Similar questions