Math, asked by Nishasingh9, 3 months ago


 \frac{2x - 1}{3} + 1 =  \frac{x - 2}{3} + 2

Answers

Answered by Anonymous
14

GIVEN :-

 \\  \sf \:  \dfrac{2x - 1}{3}  + 1 =  \dfrac{x - 2}{3}  + 2 \\  \\

TO FIND :-

  • Value of x.

 \\

SOLUTION :-

We have ,

 \\  \sf \:  \dfrac{2x  - 1}{3}  + 1 =  \dfrac{x - 2}{3}  + 2 \\

Cross multiplying , we get..

 \\   \implies\sf \:  \dfrac{2x - 1 + 1(3)}{3}  =  \dfrac{x - 2 + 2(3)}{3}  \\  \\  \\   \implies\sf \:  \dfrac{2x - 1 + 3}{3}  =  \dfrac{x - 2 + 6}{3}  \\  \\  \\   \implies\sf \:  \dfrac{2x + 2}{3}  =  \dfrac{x + 4}{3}  \\  \\  \\   \implies\sf \: 3(2x + 2) = 3(x + 4) \\  \\

  \implies\sf \: 6x + 6 = 3x + 12 \\  \\  \\   \implies\sf \: 6x - 3x = 12 - 6 \\  \\  \\   \implies\sf \: 3x = 6 \\  \\  \\   \implies\sf \: x =  \dfrac{6}{3}  \\  \\  \\   \implies\underbrace{\boxed{ \mathfrak{x = 2}}} \\  \\

Hence , value of x is 2.

 \\

VERIFICATION :-

   \to\sf\dfrac{2x - 1}{3}  + 1 =  \dfrac{x - 2}{3}  + 2 \\  \\  \\  \to \sf \:  \dfrac{2(2) - 1}{3}  + 1 =  \dfrac{2 - 2}{3}  + 2 \\  \\  \\   \to\sf \:  \dfrac{4 - 1}{3}  + 1 =  \dfrac{0}{3}  + 2 \\  \\  \\  \to \sf \:   \cancel\dfrac{3}{3}  + 1 = 0 + 2 \\  \\  \\   \to\sf \: 2 = 2 \:  \:  \:  \:  \: (verified)

Answered by MostlyMad
82

\mathfrak{{\pmb{{\underline{To~solve}}:}}}

  • \sf{{\dfrac{2x-1}{3}}+1={\dfrac{x-2}{3}}+2}

\mathfrak{{\pmb{{\underline{Solution}}:}}}

\sf{~~~~~~~~~~ {\dfrac{2x-1}{3}}+1={\dfrac{x-2}{3}}+2}

\sf\implies{{\dfrac{2x-1+3}{3}}={\dfrac{x-2+2(3)}{3}}~~~~~~~(LCM=3)}

\sf\implies{{\dfrac{2x+2}{\cancel{3}}}={\dfrac{x-2+6}{\cancel{3}}}}

\sf\implies{2x+2=x+4}

\sf\implies{2x-x=4-2}

\sf{~~~~~~~ {\blue{•~{\underline{\boxed{\sf{\pmb{x=2}}}}}}} }

\therefore\mathfrak{{\pmb{{\underline{Required~answer}}:}}}

  • x = 2

\mathfrak{{\pmb{{\underline{Verification}}:}}}

\sf{~~~~~~~~~~ {\dfrac{2x-1}{3}}+1={\dfrac{x-2}{3}}+2}

\sf\implies{{\dfrac{2(2)-1}{3}}+1={\dfrac{(2)-2}{3}}+2}

\sf\implies{{\dfrac{4-1}{3}}+1={\dfrac{2-2}{3}}+2}

\sf\implies{{\dfrac{3}{3}}+1={\dfrac{0}{3}}+2}

\sf\implies{1+1=0+2}

\sf\implies{{\blue{\underline{\boxed{\sf{\pmb{2=2}}}}}}}

  • Hence verified !
Similar questions