Math, asked by jaat8860, 5 months ago


 \frac{2x - 1}{ x + 4}  -  \frac{2x - 5}{x +  3}  = 0
Please solve this who will solve the correct answer I will mark him or her answer as brainliest answer​

Answers

Answered by BrainlyBoomerang
5

{ \huge{  \boxed{\green{ \mathscr{Solution}}}}}

{ \huge{ \red{ \frac{2x - 1}{x + 4}  -  \frac{2x - 5}{x + 3}  = 0}}}

 \frac{(2x - 1)(x + 3) - (2x - 5)(x + 4)}{(x + 4)(x + 3)}  = 0 \\  \\  \\  \\  \frac{(2 {x}^{2} + 6x - x - 3 )- (2 {x}^{2}  + 8x - 5x - 20) }{ {x}^{2} + 3x + 4x + 12 }  = 0 \\  \\  \\  \\  \frac{{ \cancel{2 {x}^{2} }} + 5x - 3  \:  \: { \cancel{- 2 {x}^{2} }} - 3x + 20}{ {x}^{2} + 7x + 12 }  = 0 \\  \\  \\  \\ 2x + 17 = 0 \\  \\  \\  \\  \\ 2x =  - 17 \\  \\  \\  \\  \\ { \huge{ \blue{ \boxed{ \red{x =  \frac{ - 17}{2} }}}}}

Similar questions