Math, asked by baby18780, 1 month ago


 \frac{2x  + 5}{2}  -  \frac{5x}{x - 1}  = x
evaluat by linear equation​

Answers

Answered by brinlyqueen
0

hey hey your ans refer to attachment

Attachments:
Answered by manmeetmaan20
1

Answer:

  • x = 1

Step-by-step explanation:

{\small{\tt\bold{\dfrac{2x + 5}{2} - \dfrac{5x}{x - 1} = x}}}

{\rightarrow{\small{\tt{\dfrac{(2x+5)(x-1)-5x(2)}{2(x-1)} = x}}}}

{\rightarrow{\small{\tt{\dfrac{(2x^2-2x+5x-5)-10x}{2x-2} = x}}}}

{\rightarrow{\small{\tt{\dfrac{2x^2 +3x-5-10x}{2x-2} = x}}}}

{\rightarrow{\small{\tt{ \dfrac{2x^2 - 7x -5}{2x-2} = x}}}}

By Cross multiplication We get,

{\rightarrow{\small{\tt{2x^2 - 7x -5 = 2x^2 - 2x}}}}

{\rightarrow{\small{\tt{2x^2 -7x-5-2x^2+2x = 0}}}}

{\rightarrow{\small{\tt{5x - 5 = 0}}}}

{\rightarrow{\small{\tt{5x = 5}}}}

{\implies{\small{ \green{\tt{x = 1}}}}}

Similar questions