Math, asked by tulanchgogoi95, 1 month ago


 \frac{ - 3}{2(± \frac{3i}{ \sqrt{2} } )}
Please a detailed explanation !​

Answers

Answered by vipinkumar212003
2

Step-by-step explanation:

 \frac{ - 3}{2(± \frac{3i}{ \sqrt{2} } )}    =  \frac{ - 3}{2±3 \sqrt{2} i}  \\  \\  \frac{ - 3}{2 + 3 \sqrt{2} i}  \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \:  \:  \frac{ - 3}{2  -  3 \sqrt{2} i}  \\  \\ \frac{ - 3}{2 + 3 \sqrt{2} i}  \times  \frac{2 -  3\sqrt{2}i }{2 -  3\sqrt{2}i}  \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \:  \:  \frac{ - 3}{2  -   3 \sqrt{2} i}  \times  \frac{2  +  3\sqrt{2}i}{2  + 3\sqrt{2}i}  \\  \\ \frac{ - 6 + 9 \sqrt{2} i}{ {(2)}^{2}   -  {(3 \sqrt{2} i)}^{2}}  \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \:  \:   \frac{- 6  - 9 \sqrt{2} i}{ {(2)}^{2}   -  {(3 \sqrt{2} i)}^{2}} \\ \\    \frac{ - 6 + 9 \sqrt{2} i}{ 4   +  18}  \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \:  \:   \frac{- 6  -  9 \sqrt{2} i}{ 4 + 18} \\  \\ \frac{ 3( - 2 + 3 \sqrt{2} i)}{21}  \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \:  \:  \frac{ 3( - 2  -  3 \sqrt{2} i)}{21}  \\  \\ \frac{ - 2 + 3 \sqrt{2} i}{7}  \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \:  \:  \frac{ - 2  -  3 \sqrt{2} i}{7}  \\  \\ \frac{ - 2  ± 3 \sqrt{2} i}{7} \\ \\   =  \frac{ - 2}{7} ± \frac{3 \sqrt{2}i }{7}   \\ \\  \color{blue}real \: part =   \frac{ - 2}{7}  \\  \\  \color{blue}imaginary \: part = ± \frac{3 \sqrt{2} i}{7}  \\  \\ \red{\mathfrak{ \large{\underline{{Hope \: It \: Helps \: You}}}}} \\ \blue{\mathfrak{ \large{\underline{{Mark \: Me \: Brainliest}}}}}

Similar questions