Math, asked by karkigaming1236, 2 months ago

 \frac{3}{5}^{3} \times \frac{5}{4}^{4} \times \frac{4}{3} ^{5}
Evaluate the following.

Answers

Answered by TYKE
32

Appropriate Question :

 \sf \looparrowright(\frac{3}{5})^{3} \times (\frac{5}{4})^{4} \times( \frac{4}{3}) ^{5}

Solution :

 \sf   (\frac{3}{5})^{3} \times (\frac{5}{4})^{4} \times (\frac{4}{3}) ^{5}

 \sf \leadsto \frac{ {3}^{3} }{ {5}^{3} }  \times  \frac{ {5}^{4} }{ {4}^{4} }  \times  \frac{ {4}^{5} }{ {3}^{5} }

We will break-down the powers for getting it easier

 \sf \leadsto \frac{ {3}^{3} }{ {5}^{3} }  \times  \frac{ {5}^{3} \times  {5}^{1}  }{ {4}^{4} }  \times  \frac{ {4}^{4}  \times  {4}^{1} }{ {3}^{3}  \times  {3}^{2} }

  \sf \leadsto \frac{ \cancel{ {3}^{3}} }{ \cancel{ {5}^{3} }}  \times  \frac{ \cancel{ {5}^{3}} \times  {5}^{1}  }{ \cancel{ {4}^{4} }}  \times  \frac{  \cancel{{4}^{4}} \times  {4}^{1}  }{ \cancel{ {3}^{3} }\times  {3}^{2}  }

 \leadsto \sf5 \times  \frac{4}{ {3}^{2} }

 \sf \leadsto \frac{5 \times 4}{9}

 \leadsto \sf \frac{20}{9}

 \sf \leadsto 1\frac{2}{9}

 \dag \:  \sf so \: the \: answer \: is \:  \small \boxed{   1\frac{2}{9}  } \:  \dag

Similar questions