Math, asked by studyyyyyyy, 1 year ago


 \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  \:  = a +b  \sqrt{2}
rationalise the denominator and find the value of a and b. PLEASE FAST!!​

Answers

Answered by anonymous4612
1

Answer:

hope it helps...

mark me brainliest...

follow me.....

Attachments:
Answered by Anonymous
15

 \frac{3 + \sqrt{2} }{3 - \sqrt{2} } \: = a +b \sqrt{2}  \\  \\ \frac{3 + \sqrt{2} }{3 - \sqrt{2} }  \times \frac{3 + \sqrt{2} }{3  +  \sqrt{2} } = a +b \sqrt{2}  \\  \\  \frac{ ({3 +  \sqrt{2} )}^{2} }{(3 -  \sqrt{2} )(3 +   \sqrt{2} )}  = a +b \sqrt{2}   \\  \\   \frac{ {3}^{2}  +  { \sqrt{2} }^{2}  + 2 \times 3 \times  \sqrt{2} }{ {3}^{2} -  { \sqrt{2} }^{2}  }  = a +b \sqrt{2}   \\  \\  \frac{9 + 2 + 6 \sqrt{2} }{9 - 2}  = a +b \sqrt{2}   \\  \\  \frac{11 + 6 \sqrt{2} }{7}  = a +b \sqrt{2}   \\  \\  \frac{11}{7}  +  \frac{6 \sqrt{2} }{7}  = a +b \sqrt{2}   \\  \\ on \: comparing \: both \: sides \\  \\ a =  \frac{11}{7}  \\  \\ b =  \frac{6}{7}  \\  \\

#lovelove!

Similar questions