Math, asked by stubborn777, 3 months ago


 \frac{3}{x + 1}  -  \frac{1}{2}  =  \frac{2}{3x - 1}

Answers

Answered by MrHyper
7

\Huge\mathfrak\purple{answer:}

 \bf  \frac{3}{x + 1}  -  \frac{1}{2}  =  \frac{2}{3x - 1}  \\  \\  \bf \implies  \frac{(3 \times 2) -(x + 1)}{2(x + 1)}  =  \frac{2}{3x - 1}  \\  \\  \bf  \implies \frac{6 - x - 1}{2x + 2}  =  \frac{2}{3x - 1}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bf \implies  \frac{5 - x}{2x + 2}  =  \frac{2}{3x - 1}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bf \implies (5 - x)(3x - 1) = 2(2x + 2) \\  \\  \bf \implies 15x - 5 -  {3x}^{2}  + x = 4x + 4 \\  \\  \bf \implies 16x - 4x -  {3x}^{2}  = 4 + 5 \:  \:  \:  \:  \:  \:  \:  \\  \\  \bf \implies 12x -  {3x}^{2}  = 9 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \bf \implies  -  {3x}^{2}  + 12x - 9 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\huge\sf\purple{Hope~it~helps..!!}

Answered by MrImpeccable
44

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

Given:

  •  \frac{3}{x + 1} - \frac{1}{2} = \frac{2}{3x - 1}

 \\

To find:

  • Value of x.

 \\

Solution:

 \implies \dfrac{3}{x + 1} - \dfrac{1}{2} = \dfrac{2}{3x - 1} \\ \\  \implies \dfrac{3*2 - 1(x + 1)}{2(x + 1)} = \dfrac{2}{3x - 1} \\ \\ \implies \dfrac{6 - x - 1}{2x + 2} = \dfrac{2}{3x - 1} \\ \\  \implies (5 - x)(3x - 1) = 2*(2x + 2) \\ \\ \implies 16x - 3x^2 - 5 = 4x + 4 \\ \\ \implies 3x^2 - 16x + 5 + 4x + 4 = 0 \\ \\ \implies 3x^2 - 12x + 9 = 0 \\ \\ \implies x^2 - 4x + 3 = 0 \\ \\ \implies x^2 - x - 3x + 3 = 0 \\ \\ \implies x(x - 1) - 3(x - 1) = 0 \\ \\ \implies (x - 1)*(x - 3) = 0 \\ \\ \implies \text{x - 1 = 0 OR x - 3 = 0 } \\ \\ \implies \textbf{x = 1 OR x = 3 }

HOPE IT HELPS!!!!

Similar questions