Math, asked by Anonymous, 2 months ago


 \frac{3t - 2}{4}  -  \frac{2t + 3}{3}  =   \frac{2}{3}  - t

No spam and no copied answer
Spam +copied answer =100 answers gonna report

And write with the steps
;) ​

Answers

Answered by SachinGupta01
10

\bf \underline{ \underline{\maltese\:Given} }

 \sf \implies \dfrac{3t - 2}{4} - \dfrac{2t + 3}{3} = \dfrac{2}{3} - t

\bf \underline{ \underline{\maltese\:To \:  find } }

 \sf \implies Value  \: of  \: t =  \: ?

\bf \underline{ \underline{\maltese\:Solution  } }

 \sf \implies Simplify  \: \: \dfrac{3t - 2}{4} - \dfrac{2t + 3}{3}

Find the common denominator.

 \sf \implies \dfrac{3t - 2}{4} \times  \dfrac{3}{3}  - \dfrac{2t + 3}{3} \times  \dfrac{4}{4}  = \dfrac{2}{3} - t

 \sf \implies \dfrac{(3t - 2)3}{12}   - \dfrac{(2t + 3)4}{12}    = \dfrac{2}{3} - t

Combine the numerators over common denominator.

 \sf \implies \dfrac{(3t - 2)3 - (2t + 3)4}{12} = \dfrac{2}{3} - t

Simplify the numerator.

 \sf \implies \dfrac{9t - 6 - 8t + 12}{12} = \dfrac{2}{3} - t

Subtract 8t from 9t.

 \sf \implies \dfrac{t - 6 -   12}{12} = \dfrac{2}{3} - t

Subtract 12 from -6.

 \sf \implies \dfrac{t - 18}{12} = \dfrac{2}{3} - t

Move all the terms containing t to the left side of the equation.

 \sf \implies \dfrac{t - 18}{12}  + t= \dfrac{2}{3}

Find the common denominator.

 \sf \implies \dfrac{t - 18}{12}  + t \times  \dfrac{12}{12} = \dfrac{2}{3}

 \sf \implies \dfrac{t - 18}{12}  + \dfrac{t \times 12}{12} = \dfrac{2}{3}

Combine the numerators over common denominator.

 \sf \implies \dfrac{t - 18 + t \times 12}{12}  = \dfrac{2}{3}

 \sf \implies \dfrac{t - 18 +12 \times  t}{12}  = \dfrac{2}{3}

Add t and 12t.

 \sf \implies \dfrac{13t - 18 }{12}  = \dfrac{2}{3}

Do cross multiplication,

 \sf \implies 3(13t - 18)  = 2(12)

 \sf \implies 39t - 54  = 24

 \sf \implies 39t  =   24 + 54

 \sf \implies 39t  =   78

 \sf \implies t  =     \cancel\dfrac{78}{39}

 \sf \implies t  =     2

Therefore,

 \sf \implies \underline{ \boxed { \sf Value  \: of  \: t =  2}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━

\bf \underline{ \underline{\maltese\:Verification   } }

To verify the answer just write 2 in place of t.

 \sf \implies \dfrac{3t - 2}{4} - \dfrac{2t + 3}{3} = \dfrac{2}{3} - t

 \sf \implies \dfrac{3(2)- 2}{4} - \dfrac{2(2) + 3}{3} = \dfrac{2}{3} - 2

 \sf \implies \dfrac{6- 2}{4} - \dfrac{4 + 3}{3} = \dfrac{2}{3} -  \dfrac{2}{1}

 \sf \implies  \cancel\dfrac{4}{4} - \dfrac{7}{3} = \dfrac{2}{3} - \dfrac{2}{1}

\sf \implies  1 - \dfrac{7}{3} = \dfrac{2}{3} - \dfrac{2 \times 3 = 6}{1 \times 3  =3 }

\sf \implies   \dfrac{3}{ 3}  - \dfrac{7}{3} = \dfrac{2}{3}  -  \dfrac{6}{3}

\sf \implies   \dfrac{ 3 - 7}{ 3}= \dfrac{2 - 6}{3}

\sf \implies   \dfrac{  - 4}{ 3}= \dfrac{  - 4}{ 3}

LHS and RHS are equal.

Hence verified !

Answered by Anonymous
2

Answer:

refer to the above attachment

hopes it will help you

plz drop some thanks

Attachments:
Similar questions