Find the value of :-
Answers
Answered by
6
♡αηsωєя ♡࿐
4/(216) -(2/3) +/(256) -(256) -(3/4) +2/(243) -(1/5)
1/154-(2/3)+1/(256)-(3/4)+2/(243)-(1/5)
-4453/6912 = (3/4)+2/(243)-(1/5)
-9637/6912+2/(243)-(1/5)
-86221/62208+2/(243)-(1/5)
-493313/311040
hope it help uh!!✌࿐
☆Mehaku☆
Answered by
36
Answer:
The given expression is
\frac{4}{(216)^{\frac{-2}{3}}}+\frac{1}{(256)^{\frac{-3}{4}}}+\frac{2}{(243)^{\frac{-1}{5}}}(216)3−24+(256)4−31+(243)5−12
Using exponent property:
x^{\frac{a}{b}}=(x^{\frac{1}{b}})^axba=(xb1)a
\frac{4}{6^{-2}}+\frac{1}{4^{-3}}+\frac{2}{3^{-1}}6−24+4−31+3−12
Using exponent property:
\frac{1}{a^{-1}}=aa−11=a
4\times 6^2+1\times 4^3+2\times 34×62+1×43+2×3
4\times 36+1\times 64+2\times 34×36+1×64+2×3
144+64+6144+64+6
214214
Therefore the value of given expression is 214.
Similar questions