Math, asked by XxCharmingGuyxX, 3 months ago


 \frac{5 { \cos }^{2} 60 + 4 { \sec }^{2} 30 -  { \tan }^{2}45 } { {sin}^{2} 30 +  {sin}^{2}60 }

Answers

Answered by richapariya121pe22ey
1

Step-by-step explanation:

 \frac{5 { \cos }^{2} 60 + 4 { \sec }^{2} 30 - { \tan }^{2}45 } { {sin}^{2} 30 + {sin}^{2}60 } \\  =  \frac{ 5{( \cos(60) )}^{2}  + 4 {( \sec(30) )}^{2} -  {( \tan(45)) }^{2}  }{ { (\sin(30) )}^{2}  +  { (\sin(60) )}^{2} }  \\  =  \frac{5 {( \frac{1}{2} )}^{2} + 4 {( \frac{2}{ \sqrt{3} } )}^{2}  -  {(1)}^{2}  }{ ({ \frac{1}{2}) }^{2} +  {( \frac{ \sqrt{3} }{2} )}^{2}  }  \\  =  \frac{5 ( \frac{1}{4}) + 4( \frac{4}{3} )  - 1}{ \frac{1}{4}  +  \frac{3}{4} }  \\  =  \frac{ \frac{5}{4}  +  \frac{16}{3}  - 1}{ \frac{1 + 3}{4} }  \\   = \frac{ \frac{15 + 64}{12} - 1 }{ \frac{4}{4} }  \\  =  \frac{ \frac{79 - 12}{12} }{1}  \\  =  \frac{67}{12}

Answered by kritee88
1

Answer:

Hope this will help you. Plz mark me as brainliest.

Attachments:
Similar questions