Math, asked by veenaanandm, 2 months ago


 \frac{5 +  \sqrt{11} }{3 - 2 \sqrt{11} }  = x + y \sqrt{11}
Find the value of 'x' and 'y'​

Answers

Answered by MagicalLove
169

Step-by-step explanation:

 \huge \textbf{ \underline{Answer :-}}

Given :

  •  \frac{5 + \sqrt{11} }{3 - 2 \sqrt{11} } = x + y \sqrt{11}

To Find:

  • Find the value of x and y

Solution:

 \implies \tt \bold{ \frac{5 +  \sqrt{11} }{3 - 2 \sqrt{11} }  = x + y \sqrt{11} } \\

Rewrite the LHS and RHS .

\implies \tt \bold{ x + y \sqrt{11}  =  \frac{5 +  \sqrt{11} }{3 - 2 \sqrt{11} } } \\

Now , Rationalize the denominator by 3+211

\implies \tt \bold{ x + y \sqrt{11}  =  \frac{5 +  \sqrt{11} }{3 - 2 \sqrt{11}} } \bold{  \times  \frac{3 + 2 \sqrt{11} }{3 + 2 \sqrt{11} }}  \\

Simplify the RHS

By using the formula a²-b²=(a+b)(a-b)

\implies \tt \bold{ x + y \sqrt{11}  =  \frac{(5 +  \sqrt{11})(3 + 2 \sqrt{11})  }{ {3}^{2} - 4(11)} }  \\

\implies \tt \bold{ x + y \sqrt{11}  =  \frac{15 + 13 \sqrt{11} + 22 }{ - 35} } \\

Adding the numbers 15 and 22 is 37 .

\implies \tt \bold{ x + y \sqrt{11}  =  \frac{37 + 13 \sqrt{11} }{ - 35}}  \\

Now , the comparing the LHS AND RHS.

\implies \tt \bold{ x + y \sqrt{11}  =  \frac{ - 37}{35}  -  \frac{13}{35}  \sqrt{11}}  \\

 \therefore \boxed{ \bf{ \red{x =  \frac{ - 37}{35}}} }

 \therefore \boxed{ \red{ \bf{y =  \frac{ - 13}{35}}}}

Hope it will help you mate !!

Mark as Brainlist !!

Answered by yendavasudhagmailcom
3

Answer:

3−2

11

5+

11

=x+y

11

To Find:

Find the value of x and y

Solution:

\begin{gathered} \implies \tt \bold{ \frac{5 + \sqrt{11} }{3 - 2 \sqrt{11} } = x + y \sqrt{11} } \\ \end{gathered}

3−2

11

5+

11

=x+y

11

Rewrite the LHS and RHS .

\begin{gathered}\implies \tt \bold{ x + y \sqrt{11} = \frac{5 + \sqrt{11} }{3 - 2 \sqrt{11} } } \\ \end{gathered}

⟹x+y

11

=

3−2

11

5+

11

Now , Rationalize the denominator by 3+2√11

\begin{gathered}\implies \tt \bold{ x + y \sqrt{11} = \frac{5 + \sqrt{11} }{3 - 2 \sqrt{11}} } \bold{ \times \frac{3 + 2 \sqrt{11} }{3 + 2 \sqrt{11} }} \\ \end{gathered}

⟹x+y

11

=

3−2

11

5+

11

×

3+2

11

3+2

11

Simplify the RHS

By using the formula a²-b²=(a+b)(a-b)

\begin{gathered}\implies \tt \bold{ x + y \sqrt{11} = \frac{(5 + \sqrt{11})(3 + 2 \sqrt{11}) }{ {3}^{2} - 4(11)} } \\ \end{gathered}

⟹x+y

11

=

3

2

−4(11)

(5+

11

)(3+2

11

)

\begin{gathered}\implies \tt \bold{ x + y \sqrt{11} = \frac{15 + 13 \sqrt{11} + 22 }{ - 35} } \\ \end{gathered}

⟹x+y

11

=

−35

15+13

11

+22

Adding the numbers 15 and 22 is 37 .

\begin{gathered}\implies \tt \bold{ x + y \sqrt{11} = \frac{37 + 13 \sqrt{11} }{ - 35}} \\ \end{gathered}

⟹x+y

11

=

−35

37+13

11

Now , the comparing the LHS AND RHS.

\begin{gathered}\implies \tt \bold{ x + y \sqrt{11} = \frac{ - 37}{35} - \frac{13}{35} \sqrt{11}} \\ \end{gathered}

⟹x+y

11

=

35

−37

35

13

11

\therefore \boxed{ \bf{ \red{x = \frac{ - 37}{35}}} }∴

x=

35

−37

\therefore \boxed{ \red{ \bf{y = \frac{ - 13}{35}}}}∴

y=

35

−13

H

Step-by-step explanation:

please mark me as brainlist

Similar questions