Find the value of 'x' and 'y'
Answers
Step-by-step explanation:
Given :
To Find:
- Find the value of x and y
Solution:
Rewrite the LHS and RHS .
Now , Rationalize the denominator by 3+2√11
Simplify the RHS
By using the formula a²-b²=(a+b)(a-b)
Adding the numbers 15 and 22 is 37 .
Now , the comparing the LHS AND RHS.
Hope it will help you mate !!
Mark as Brainlist !!
Answer:
3−2
11
5+
11
=x+y
11
To Find:
Find the value of x and y
Solution:
\begin{gathered} \implies \tt \bold{ \frac{5 + \sqrt{11} }{3 - 2 \sqrt{11} } = x + y \sqrt{11} } \\ \end{gathered}
⟹
3−2
11
5+
11
=x+y
11
Rewrite the LHS and RHS .
\begin{gathered}\implies \tt \bold{ x + y \sqrt{11} = \frac{5 + \sqrt{11} }{3 - 2 \sqrt{11} } } \\ \end{gathered}
⟹x+y
11
=
3−2
11
5+
11
Now , Rationalize the denominator by 3+2√11
\begin{gathered}\implies \tt \bold{ x + y \sqrt{11} = \frac{5 + \sqrt{11} }{3 - 2 \sqrt{11}} } \bold{ \times \frac{3 + 2 \sqrt{11} }{3 + 2 \sqrt{11} }} \\ \end{gathered}
⟹x+y
11
=
3−2
11
5+
11
×
3+2
11
3+2
11
Simplify the RHS
By using the formula a²-b²=(a+b)(a-b)
\begin{gathered}\implies \tt \bold{ x + y \sqrt{11} = \frac{(5 + \sqrt{11})(3 + 2 \sqrt{11}) }{ {3}^{2} - 4(11)} } \\ \end{gathered}
⟹x+y
11
=
3
2
−4(11)
(5+
11
)(3+2
11
)
\begin{gathered}\implies \tt \bold{ x + y \sqrt{11} = \frac{15 + 13 \sqrt{11} + 22 }{ - 35} } \\ \end{gathered}
⟹x+y
11
=
−35
15+13
11
+22
Adding the numbers 15 and 22 is 37 .
\begin{gathered}\implies \tt \bold{ x + y \sqrt{11} = \frac{37 + 13 \sqrt{11} }{ - 35}} \\ \end{gathered}
⟹x+y
11
=
−35
37+13
11
Now , the comparing the LHS AND RHS.
\begin{gathered}\implies \tt \bold{ x + y \sqrt{11} = \frac{ - 37}{35} - \frac{13}{35} \sqrt{11}} \\ \end{gathered}
⟹x+y
11
=
35
−37
−
35
13
11
\therefore \boxed{ \bf{ \red{x = \frac{ - 37}{35}}} }∴
x=
35
−37
\therefore \boxed{ \red{ \bf{y = \frac{ - 13}{35}}}}∴
y=
35
−13
H
Step-by-step explanation:
please mark me as brainlist