Math, asked by aankitasaha96, 9 months ago


 \frac{5 \times  {3}^{x}  -  9 \times  {3}^{x - 2}  }{ {3}^{x}  -  {3}^{x - 1} }

Answers

Answered by Sudhir1188
7

ANSWER:

  • THE VALUE OF THIS EXPRESSION IS 6.

GIVEN:

 \frac{5 \times 3 {}^{x}  - 9 \times 3 {}^{x - 2} }{3 {}^{x} - 3 {}^{x - 1}  }

TO FIND:

The value of the above expression.

SOLUTION:

 =  \frac{5 \times 3 {}^{x}  - 9 \times 3 {}^{x - 2} }{3 {}^{x} - 3 {}^{x - 1}  } \\  =  \frac{5 \times 3 {}^{x}  - 3 { }^{2}  \times 3 {}^{x - 2} }{3 {}^{x} - 3 {}^{x }   \times 3 {}^{ - 1} }  \\  =  \frac{5 \times 3 {}^{x}  -  3 {}^{x - 2 + 2} }{3 {}^{x} -  \frac{3 {}^{x} }{3}  }  \\  =  \frac{5 \times 3 {}^{ x} - 3 {}^{x}  }{3 {}^{x}(1 -  \frac{1}{3} ) }  \\   = \frac{3 {}^{x} (5 - 1)}{3 {}^{x}( \frac{2}{3}  )}  \\    \implies \: 3 {}^{x}  \: will \: be \: cancel \: out \\  = 4 \times  \frac{3}{2}  \\  = 6

THE VALUE OF THIS EXPRESSION IS 6.

NOTE:

some important formulas:

 \implies \: a {}^{m}  \times a {}^{n}  = a {}^{m + n}  \\  \implies \: a {}^{m}   \div  a {}^{n}  = a {}^{m  - n}  \:

Similar questions