Math, asked by MichWorldCutiestGirl, 3 days ago

\frac { 5 } { x - 1 } + \frac { 1 } { y - 2 } = 2 \\ \cdot \frac { 6 } { x - 1 } - \frac { 8 } { y - 2 } = 1​ \\

Don't spam!​

Answers

Answered by Anonymous
37

 \sf \bigstar \: Correct  \: Question :

  • Solve the following pair of equation by reducing them to a pair of linear equation.

\rm \implies\dfrac{ 5 } { x - 1 } + \dfrac{ 1 } { y - 2 } = 2

 \rm \implies \: \dfrac{ 6 } { x - 1 } - \dfrac{ 8 } { y - 2 } = 1

\sf \bigstar \: Correct  \: Solution :

 \rm \: Let's  \: consider ,

 \rm \implies \: \dfrac{1}{x - 1}  = p

\rm \implies \: \dfrac{1}{y - 2}  = q

 \rm \: Substituting  \:  \dfrac{1}{x - 1}  = p  \: and \:  \dfrac{1}{y - 2}  = q  \: in  \:  \: given  \: eqution  \: we \:  get,

\sf \bigstar \: 5 \: p + q = 2  \:  \: (1)

\sf \bigstar \: 6 \: p + 3 \: q =  \:  \: (2)

 \rm \: Multiplying \:  equation \:  (1)  \:  \: by \: 3 \:  and \: (2) \:  by \:  1 \:  ,we  \: get

\sf  \bigstar \:  15 \: p + 3 \: q = 6  \:  \:  \:  \: (3)

\sf  \bigstar \:  6 \: p - 3 \: q = 1 \:  \:  \:  \: (4)

 \rm \: By  \: adding \:  equation \:  (3) \:   \: and  \: (4)

\sf  \:  \:  \:  \:  \:  \:  \:  \: \: 15 \: p + 3 \: q = 6

\sf  \:  \:  \:  \:  \:  \:  \:  \: \: 6 \: p  - 3 \: q = 1

____________________________________

\sf  \:  \:  \:  \:  \:  \:  \:  \: \: 21\: p = 7

 \rm \: p =  \dfrac{7}{21} =  \dfrac{1}{3}

\rm \: Substituting  \:p =   \dfrac{1}{3} \: in\: eqution   \: (2)\: we \:  get ,

\sf \implies \: 6 \:  \times \dfrac{1}{3} - 3 \: q = 1

\sf \implies \: 6 \:  \times \dfrac{1}{3} - 3 \: q = 1 \sf \implies 2 -  3 \: q = 1

 \rm \implies \: 3 \: q = 1

 \rm \implies \:  q = \dfrac{1}{3}

 \rm\therefore \:  \dfrac{1}{x - 1}  = p

\rm\implies \:  \dfrac{1}{x - 1}  =  \dfrac{1}{3}

 \rm \: By  \: cross \:  \:  multiplication :

 \rm \implies \: x - 1 = 3

\rm \implies \: x= 3 + 1

\rm \implies  \boxed{\: x= 4}

\rm\therefore \:  \dfrac{1}{y- 2}  = q

\rm\implies \:  \dfrac{1}{y- 2}  =  \dfrac{1}{3}

\rm \: By  \: cross \:  \:  multiplication :

\rm\implies \:  y - 2 = 3

\rm \implies \: y = 3  + 2

\rm \implies  \boxed{\: y= 5}

\sf \bigstar \: Final \: Answer :

  • Here solution of given pair of equations is

\bf \implies  \boxed{\: x= 4}

\bf\implies  \boxed{\: y= 5}

Similar questions