Math, asked by acharyaavinandita8, 4 days ago


 \frac{5x - 1}{12  }  -  \frac{x - 4}{5}  =  \frac{x  + 7}{6}
Solve this equation and verify the result​

Answers

Answered by srilashyalavakumar
1

Step 1. Multiply the numbers

           (5x - 1 . 1/12) - (x - 1 . 4/5) = x + 7/6

           (5x - 1/12) - (x - 1 . 4/5) = x + 7/6

           

Step 2. Multiply the numbers

            (5x - 1/12) - (x - 1 . 4/5) = x + 7/6

            (5x - 1/12) - (x - 4/5) = x + 7/6

Step 3. Distribute

            (5x - 1/2) - (x - 4/5) = x + 7/6

            (5x - 1/2) - x - 4/5 = x + 7/6

Answered by imsreenanda
4

Answer:

 \frac{5x - 1}{12}  -  \frac{x - 4}{5}  =  \frac{x + 7}{6}

Multiplying both sides of the given equation by 60 , the LCM of 12,5 and 6 we get

( \frac{5x - 1}{12} ) \times 60 - ( \frac{x - 4}{5} ) \times 60 =  \frac{ \times  + 7}{6}  \times 60

5(5x -1) - 12(x-4) = 10 (x+7)

25x - 5 - 12x + 48 = 10x + 70

13x + 43 = 10x + 70

13x - 10x = 70 - 43 [transporting 10x to LHS and 43 to RHS]

3x = 27

 \frac{3x}{3}  =  \frac{27}{3}  \\ x = 9

Hence , x = 9 is the solution of the given equation.

Verification:-

substituting x = 9 in the given equation we get

LHS =  \frac{5 \times 9 - 1}{12}  -  \frac{9 - 4}{5}  =  \frac{44}{12}  -  \frac{5}{5}  =   \\  \\ \frac{11}{3}  = 1 =  \frac{11 - 3}{3}   \\ =  \frac{8}{3}

LHS = RHS

the solution is thus checked for its correctness.

Similar questions